cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Discussions

Solve problems, and share tips and tricks with other JMP users.
%3CLINGO-SUB%20id%3D%22lingo-sub-584513%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-584513%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EVielleicht%20verstehe%20ich%20deine%20Frage%20nicht.%20Ich%20denke%2C%20Sie%20fragen%20nach%20dem%20Modellieren%20oder%20Testen%20der%20Varianz%20der%20Antwort.%20Ihr%20Design%20und%20Ihr%20Modell%20gehen%20davon%20aus%2C%20dass%20die%20Varianz%20der%20Antwort%20%C3%BCberall%20konstant%20ist.%20Die%20Konfidenzintervalle%2F-regionen%20stellen%20die%20Unsicherheit%20bei%20der%20Sch%C3%A4tzung%20des%20Mittelwerts%20der%20Antwortvariablen%20oder%20einzelner%20Vorhersagen%20dar%2C%20nicht%20die%20inh%C3%A4rente%20Variation%20der%20Antwortvariablen.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-584519%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-584519%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHallo%20Mark%2C%3C%2FP%3E%3CP%3EDanke%20daf%C3%BCr!%20Ja%2C%20ich%20beziehe%20mich%20auf%20das%20Testen%20der%20Varianz%20der%20Antwort%2C%20aber%20in%20Bezug%20auf%20bestimmte%20Regionen%20%C3%BCber%20einen%20Eingabefaktor.%20Ich%20werde%20versuchen%2C%20ein%20konkreteres%20Beispiel%20zu%20geben%3A%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EEiner%20meiner%20Eingabefaktoren%20ist%20der%20pH-Wert%20im%20Bereich%20von%204%2C5%20bis%207%2C5%2C%20wobei%20pH%206%20einer%20der%20zentralen%20Punkte%20ist.%20Es%20besteht%20die%20M%C3%B6glichkeit%2C%20dass%20die%20Reaktion%20bei%20einem%20h%C3%B6heren%20pH-Wert%20st%C3%A4rker%20variiert%20als%20bei%20einem%20niedrigeren%20pH-Wert.%20Wenn%20dies%20der%20Fall%20ist%2C%20m%C3%B6chten%20wir%20dies%20sch%C3%A4tzen.%20Da%20dies%20bedeuten%20kann%2C%20dass%20wir%20unseren%20pH-Bereich%20(etwas%20unter%207%2C5)%20einschr%C3%A4nken%20m%C3%BCssen%2C%20um%20ein%20genauer%20angepasstes%20Modell%20zu%20erstellen.%20Ich%20gehe%20jedoch%20davon%20aus%2C%20dass%20ich%20Replikationen%20bestimmter%20Punkte%20%C3%BCber%20den%20Designbereich%20ausf%C3%BChren%20m%C3%BCsste%20(ich%20kann%20es%20mir%20nicht%20leisten%2C%20doppelte%20L%C3%A4ufe%20auszuf%C3%BChren)%2C%20was%20sich%20als%20schwierig%20erweisen%20w%C3%BCrde%2C%20da%20es%20sich%20um%20ein%20benutzerdefiniertes%20Design%20handelt%20und%20ich%20%E2%80%9Edie%20Ecken%E2%80%9C%20meines%20nicht%20visualisieren%20kann%20Gestaltungsraum.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EIch%20hoffe%2C%20das%20ist%20etwas%20klarer%2C%20ich%20bin%20neu%20bei%20DoE%2C%20also%20kann%20es%20eine%20L%C3%BCcke%20in%20meinem%20Wissen%20sein%2C%20die%20ich%20hier%20ansprechen%20muss.%20Jeder%20Vorschlag%20f%C3%BCr%20bestimmte%20Ressourcen%20w%C3%A4re%20sehr%20willkommen.%20Danke%20sch%C3%B6n!%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-584557%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-584557%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHier%20sind%20meine%20Gedanken%2C%20wie%20ich%20Ihre%20Frage%20verstehe.%20Sie%20m%C3%B6chten%20zus%C3%A4tzlich%20zum%20Mittelwert%20die%20Varianz%20modellieren.%20Dazu%20m%C3%BCssen%20Sie%20bei%20jeder%20Behandlungskombination%20mehrere%20Datenpunkte%20erfassen.%20Wie%20Sie%20diese%20Datenpunkte%20sammeln%2C%20h%C3%A4ngt%20davon%20ab%2C%20welche%20x%20Ihrer%20Meinung%20nach%20die%20Variation%20beeinflussen%20w%C3%BCrden.%20Angenommen%2C%20Sie%20haben%20bei%20jeder%20Behandlung%20eine%20Probe%20entnommen%20und%20diese%20wird%20an%20mehreren%20Stellen%20der%20Probe%20gemessen%20(eine%20Versuchseinheit%20f%C3%BCr%20jede%20Behandlung).%20In%20diesem%20Fall%20w%C3%BCrde%20die%20Variation%20darauf%20zur%C3%BCckzuf%C3%BChren%20sein%2C%20dass%20sich%20x%20innerhalb%20des%20Abtast-%20und%20Messfehlers%20%C3%A4ndert.%20Wenn%20Sie%20die%20Faktoren%20in%20Ihrem%20Experiment%20modellieren%2C%20k%C3%B6nnen%20Sie%20erfahren%2C%20ob%20Faktoren%20(oder%20Faktorwechselwirkungen)%20diese%20verwechselten%20Variationskomponenten%20beeinflussen%20(wahrscheinlich%20innerhalb%20der%20Stichprobe%2C%20da%20es%20unwahrscheinlich%20ist%2C%20dass%20die%20Faktoren%20in%20Ihrem%20Experiment%20die%20Messfehler%20beeinflussen).%20Ein%20weiteres%20Beispiel%3A%20Angenommen%2C%20Sie%20erhalten%20mehrere%20Proben%20f%C3%BCr%20jede%20Behandlung%20(immer%20noch%20eine%20Versuchseinheit)%20und%20messen%20jede%20Probe.%20Der%20Grund%20f%C3%BCr%20die%20Schwankung%20in%20diesem%20Fall%20ist%20die%20%C3%84nderung%20der%20x-Werte%20von%20Probe%20zu%20Probe%20innerhalb%20von%20Probe%20und%20Messfehler.%20Auch%20hier%20w%C3%BCrde%20die%20Modellierung%20der%20Faktoren%20aus%20Ihrem%20DOE%20einen%20Einblick%20geben%2C%20ob%20die%20Faktoren%20die%20Variabilit%C3%A4t%20dieser%20Variationskomponenten%20beeinflussen.%20Nat%C3%BCrlich%20k%C3%B6nnen%20Sie%20mehrere%20%22Ebenen%22%20verschachtelter%20Komponenten%20erstellen%2C%20um%20festzustellen%2C%20ob%20Faktoren%20Varianzkomponenten%20beeinflussen.Sinn%20ergeben%3F%20%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-584602%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-584602%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHi%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F41943%22%20target%3D%22_blank%22%3E%20%40aaidaa%3C%2FA%3E%20%2C%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3ESie%20haben%20bereits%20hervorragende%20Antworten%20und%20Fragen%20von%20anderen%20brillanten%20Mitgliedern%20dieser%20Community%20erhalten.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EBeim%20Lesen%20Ihrer%20Fragen%20denke%20ich%20an%20(mindestens)%20drei%20Varianzquellen%2C%20die%20m%C3%B6glicherweise%20miteinander%20verbunden%20sind%2C%20aber%20unabh%C3%A4ngig%20voneinander%20bewertet%20werden%20k%C3%B6nnten%3A%3C%2FP%3E%3COL%3E%3CLI%3EVorhersagevarianz%20des%20erstellten%20Designs%3A%20Abh%C3%A4ngig%20von%20der%20Verteilung%20der%20Punkte%20im%20Design%20haben%20Sie%20einen%20Unterschied%20in%20der%20Genauigkeit%20Ihrer%20Vorhersagen%20aufgrund%20des%20gew%C3%A4hlten%20Designs%2C%20des%20Optimalit%C3%A4tskriteriums%2C%20der%20Anzahl%20der%20Durchl%C3%A4ufe%2C%20der%20Wiederholungen%2FZentren%20usw.%20..%20Wenn%20Sie%20die%20nur%20Ihrem%20Design%20zugeschriebene%20Vorhersagevarianz%20wissen%20m%C3%B6chten%2C%20k%C3%B6nnen%20Sie%20sich%20das%20Skript%20%22Evaluate%20Design%22%20in%20Ihrer%20DoE-Datentabelle%20ansehen%20und%20sich%20das%20%22%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fsupport%2Fhelp%2Fen%2F17.0%2F%23page%2Fjmp%2Fprediction-variance-profile.shtml%3Fos%3Dwin%26amp%3Bsource%3Dapplication%23ww168138%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20Prognoseabweichungsprofil%20(jmp.com)%3C%2FA%3E%20%22.%20Diese%20Vorhersagevarianz%20ist%20nur%20auf%20Ihr%20Design%20zur%C3%BCckzuf%C3%BChren%20und%20hilft%20Ihnen%20herauszufinden%2C%20wo%20in%20Ihrem%20Designbereich%20Ihre%20Vorhersagen%20mehr%20oder%20weniger%20Variabilit%C3%A4t%20aufweisen.%3C%2FLI%3E%3CLI%3EAntwortvarianz%20%3A%20Sie%20haben%20bereits%20eine%20gro%C3%9Fartige%20Antwort%20von%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F4358%22%20target%3D%22_blank%22%3E%20%40statmann%3C%2FA%3E%20.%20F%C3%BCr%20diesen%20Teil%20k%C3%B6nnte%20es%20interessant%20sein%2C%20bei%20jedem%20Durchlauf%20Ihres%20Designs%20mehrere%20Male%20zu%20messen%20und%20dann%20den%20Mittelwert%20und%20die%20Standardabweichung%20Ihrer%20pH-Reaktion%20f%C3%BCr%20jeden%20Durchlauf%20zu%20berechnen.%20Wenn%20Sie%20die%20pH-Reaktion%20modellieren%2C%20k%C3%B6nnen%20Sie%20dann%20zwei%20Antworten%20anstelle%20von%20einer%20(Mittelwert%20und%20Std)%20haben%2C%20um%20eine%20Vorstellung%20von%20dem%20vorhergesagten%20Wert%20in%20Ihrem%20experimentellen%20Raum%20(dank%20berechneter%20Mittelwerte)%20und%20der%20Variabilit%C3%A4t%20Ihrer%20Antwort%20zu%20haben%20(dank%20Std-Werte%20berechnet).%20Es%20kann%20Ihnen%20helfen%2C%20herauszufinden%2C%20ob%20Ihre%20pH-Reaktion%20ein%20heteroskedastisches%20Verhalten%20aufweist%20(die%20Standardabweichung%20ist%20%C3%BCber%20den%20Messbereich%20nicht%20konstant).%3C%2FLI%3E%3CLI%3EInput-Varianz%3A%20Zus%C3%A4tzlich%20zu%20diesen%20beiden%20Varianzquellen%20m%C3%BCssen%20Sie%20m%C3%B6glicherweise%20auch%20die%20Varianz%20Ihrer%20Inputs%20ber%C3%BCcksichtigen%20(z.%20B.%20Einfluss%20der%20Rohstoffcharge%20f%C3%BCr%20Ihren%20Faktor).%20F%C3%BCr%20diesen%20Teil%20k%C3%B6nnen%20nur%20Wiederholungen%20(einzelne%20L%C3%A4ufe%20mit%20der%20gleichen%20Behandlung)%20diese%20Varianzinformationen%20liefern%2C%20gemischt%20mit%20der%20Messvarianz%20der%20Reaktion%20und%20der%20Vorhersagevarianz%20(je%20nachdem%2C%20wo%20sich%20die%20Wiederholungspunkte%20in%20Ihrem%20Versuchsraum%20befinden).%3C%2FLI%3E%3C%2FOL%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EEine%20Kombination%20dieser%20verschiedenen%20Techniken%20(mehrere%20Messungen%2FL%C3%A4ufe%2C%20Verwendung%20von%20Wiederholungen%20und%20Visualisierung%2FAnalyse%20des%20Profils%20der%20Vorhersagevarianz)%20kann%20Ihnen%20dabei%20helfen%2C%20die%20Ursachen%20der%20Variabilit%C3%A4t%20und%20ihre%20%E2%80%9EGr%C3%B6%C3%9Fen%E2%80%9C%20zu%20unterscheiden.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EIch%20hoffe%2C%20diese%20zus%C3%A4tzliche%20Antwort%20wird%20Ihnen%20helfen%2C%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-584685%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-584685%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EVielen%20Dank%20f%C3%BCr%20die%20Best%C3%A4tigung%2C%20dass%20Sie%20am%20Testen%20und%20Modellieren%20von%20Effekten%20auf%20die%20Varianz%20der%20Antwortvariablen%20interessiert%20sind.%20Derzeit%20gibt%20es%20keine%20Methode%20zum%20Entwerfen%20von%20Experimenten%20zum%20Modellieren%20der%20Varianz%20der%20Antwort.%20Bitte%20befolgen%20Sie%20die%20Ratschl%C3%A4ge%20anderer%20bez%C3%BCglich%20der%20Replikation%20von%20L%C3%A4ufen.%20Ich%20beziehe%20mich%20nicht%20auf%20die%20wiederholte%20Messung%20des%20Versuchsger%C3%A4ts%20am%20Ende%20eines%20Laufs%2C%20sondern%20auf%20die%20Wiederholung%20der%20Behandlung%20mit%20einem%20neuen%20Versuchsger%C3%A4t.%20Das%20Tolle%20daran%20ist%2C%20dass%20JMP%20eine%20Analysemethode%20hat%2C%20die%20Ihren%20Anforderungen%20entspricht!%20(Es%20gibt%20sie%20auch%20schon%20seit%20langer%20Zeit.)%20Siehe%20die%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fsupport%2Fhelp%2Fen%2F17.0%2F%23page%2Fjmp%2Floglinear-variance-models.shtml%23%22%20target%3D%22_self%22%20rel%3D%22noopener%20noreferrer%22%3E%20LogLineares%20Varianzmodell%3C%2FA%3E%20Dokumentation%2C%20die%20%C3%BCber%20das%20Startdialogfeld%20%E2%80%9EAnalysieren%E2%80%9C%20%26gt%3B%20%E2%80%9EModell%20anpassen%E2%80%9C%20verf%C3%BCgbar%20ist.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-584789%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-584789%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EIch%20stimme%20zu%2C%20dass%20es%20hier%20sehr%20gute%20Antworten%20gibt%2C%20aber%20ich%20werde%20vielleicht%20noch%20eine%20mit%20einem%20bestimmten%20Ansatz%20hinzuf%C3%BCgen.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%26gt%3B%26gt%3B%3CSPAN%3E%20dh%20wie%20kann%20ich%20die%20Variabilit%C3%A4t%20in%20Bezug%20auf%20die%20Faktoren%20im%20Designraum%20im%20Gegensatz%20zu%20nur%20der%20Antwort%20bewerten%3F%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%3ESie%20k%C3%B6nnen%20die%20EMP-Plattform%20verwenden%2C%20um%20zu%20sehen%2C%20ob%20bestimmte%20Regionen%20Ihres%20Designbereichs%20mehr%20Variationen%20aufweisen%20als%20andere.%20Kredit%20geht%20an%3C%2FSPAN%3E%3CSPAN%3E%20Bill%20Kappele%20f%C3%BCr%20die%20Erfindung%20dieser%20Taktik%2C%20die%20er%20%22Sanity%20Check%22%20nennt.%20Im%20Beispiel%20unten%20weist%20einer%20der%20Bereiche%2FVersuche%20im%20Designraum%20mehr%20Variationen%20auf%20als%20die%20anderen.%20Der%20Trick%20besteht%20darin%2C%20eine%20neue%20%22Check%22-Spalte%20zu%20erstellen%2C%20die%20ein%20Indikator%20f%C3%BCr%20alle%20Ihre%20Faktorstufen%20ist.%20Es%20wird%20auch%20davon%20ausgegangen%2C%20dass%20Sie%20L%C3%A4ufe%20an%20gen%C3%BCgend%20Stellen%20wiederholt%20haben%2C%20um%20die%20Varianz%20sch%C3%A4tzen%20zu%20k%C3%B6nnen.%20Ich%20habe%20eine%20Beispieldatentabelle%20angeh%C3%A4ngt%2C%20f%C3%BCr%20die%20das%20EMP-Skript%20in%20der%20Tabelle%20das%20folgende%20Beispiel%20ausgibt.%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1671726522255.png%22%20style%3D%22width%3A%20334px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F48637i283819DDF504E68B%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Jed_Campbell_0-1671726522255.png%22%20alt%3D%22Jed_Campbell_0-1671726522255.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EWenn%20Sie%20eher%20einen%20statistischen%20als%20einen%20visuellen%20Test%20w%C3%BCnschen%2C%20kann%20dies%20der%20Test%20Ungleiche%20Varianzen%20in%20der%20Plattform%20Fit%20Y%20by%20X%20liefern%20(auch%20in%20der%20Datentabelle%20als%20Fit%20Y%20by%20X%20gespeichert).%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_1-1671726977355.png%22%20style%3D%22width%3A%20370px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F48640iE77116987C8FE258%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Jed_Campbell_1-1671726977355.png%22%20alt%3D%22Jed_Campbell_1-1671726977355.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-585850%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-585850%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHallo%20Statmann%2C%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EDanke%20f%C3%BCr%20deine%20Nachricht!%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EDas%20einzige%20Problem%20ist%2C%20dass%20ich%20nicht%20ganz%20sicher%20bin%2C%20welche%20Faktoren%20(und%20vor%20allem%20die%20Bereiche%20innerhalb%20dieser%20Faktoren)%20tats%C3%A4chlich%20eine%20gr%C3%B6%C3%9Fere%20Varianz%20verursachen%2C%20was%20es%20daher%20erfordert%2C%20dass%20ich%20alle%20experimentellen%20L%C3%A4ufe%20wiederholen%20muss%2C%20was%20dies%20zu%20einem%20sehr%20kostspieligen%20Prozess%20macht.%20Aus%20diesem%20Grund%20habe%20ich%20in%20meinem%20urspr%C3%BCnglichen%20Design%20keine%20Wiederholungsl%C3%A4ufe%20eingef%C3%BCgt%2C%20sondern%20nur%20Mittelpunkte%20repliziert.%20Wenn%20ich%20einige%20der%20Behandlungen%20aus%20dem%20urspr%C3%BCnglichen%20Design%20wiederholen%20w%C3%BCrde%2C%20k%C3%B6nnte%20ich%20es%20mir%20wahrscheinlich%20leisten%2C%207%20experimentelle%20Variationen%20erneut%20auszuf%C3%BChren%20(von%20den%2028%20Durchl%C3%A4ufen%2C%20die%20mein%20benutzerdefiniertes%20DoE%20generiert%20hat).%20Hier%20suche%20ich%20nach%20Anregungen.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EAbgesehen%20davon%20gibt%20es%20bestimmte%20Punkte%2C%20bei%20denen%20ich%20mir%20in%20Ihrem%20Vorschlag%20nicht%20sicher%20bin%2C%20ob%20Sie%20freundlicherweise%20darauf%20eingehen%20k%C3%B6nnen.%20Ich%20habe%20es%20aufgeschl%C3%BCsselt%2C%20nur%20um%20sicherzustellen%2C%20dass%20ich%20ihm%20folge.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EBeispiel%201%3A%3C%2FP%3E%3COL%3E%3CLI%3E%3CEM%3E%3CFONT%20color%3D%22%230000FF%22%3E%E2%80%9ENehmen%20wir%20zum%20Beispiel%20an%2C%20Sie%20haben%20bei%20jeder%20Behandlung%20eine%20Probe%20entnommen%20und%20diese%20wird%20an%20mehreren%20Stellen%20%C3%BCber%20die%20Probe%20hinweg%20gemessen%20(eine%20Versuchseinheit%20f%C3%BCr%20jede%20Behandlung).In%20diesem%20Fall%20w%C3%A4re%20die%20Variation%20darauf%20zur%C3%BCckzuf%C3%BChren%2C%20dass%20sich%20x%20innerhalb%20des%20Proben-%20und%20Messfehlers%20%C3%A4ndert.%E2%80%9C%3C%2FFONT%3E%20-%3C%2FEM%3E%3CSPAN%3E%20Ich%20glaube%2C%20Sie%20beziehen%20sich%20auf%20die%20erneute%20Messung%20der%20Proben%20des%20Versuchslaufs%2C%20um%20den%20Messfehler%20zu%20verstehen%3F%3C%2FSPAN%3E%3C%2FLI%3E%3CLI%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CEM%3E%E2%80%9EWenn%20Sie%20die%20Faktoren%20in%20Ihrem%20Experiment%20modellieren%2C%20k%C3%B6nnen%20Sie%20erfahren%2C%20ob%20Faktoren%20(oder%20Faktorinteraktionen)%20diese%20verwechselten%20Variationskomponenten%20beeinflussen%20(wahrscheinlich%20innerhalb%20der%20Stichprobe%2C%20da%20es%20unwahrscheinlich%20ist%2C%20dass%20die%20Faktoren%20in%20Ihrem%20Experiment%20die%20Messfehler%20beeinflussen).%E2%80%9C%3C%2FEM%3E%3C%2FFONT%3EWenn%20Sie%20die%20Faktoren%20in%20meinem%20Experiment%20modellieren%2C%20meinen%20Sie%2C%20sie%20so%20zu%20modellieren%2C%20dass%20die%20Varianz%20der%20Antwort%20hier%20die%20Antwort%20ist%3F%3C%2FLI%3E%3C%2FOL%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3E%3CSPAN%3EBeispiel%202%3C%2FSPAN%3E%3C%2FP%3E%3COL%3E%3CLI%3E%3CSPAN%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CEM%3E%22Ein%20weiteres%20Beispiel%3A%20Nehmen%20wir%20an%2C%20Sie%20erhalten%20mehrere%20Proben%20f%C3%BCr%20jede%20Behandlung%20(immer%20noch%20eine%20Versuchseinheit)%20und%20messen%20jede%20Probe.%20Der%20Grund%20f%C3%BCr%20die%20Variation%20in%20diesem%20Fall%20ist%20die%20Ver%C3%A4nderung%20des%20x%20von%20Probe%20zu%20Probe%2C%20innerhalb%20von%20Probe%20und%20Messfehler.%E2%80%9C%3C%2FEM%3E%3C%2FFONT%3EWenn%20Sie%20sich%20auf%20die%20Faktoren%20beziehen%2C%20die%20sich%20von%20Probe%20zu%20Probe%20%C3%A4ndern%20-%20beziehen%20Sie%20sich%20auf%20experimentelle%20Fehler%2C%20z.%20B.%20Pipettierfehler%2C%20die%20eine%20Variation%20zwischen%20Faktoren%20verursachen%3F%3C%2FSPAN%3E%3C%2FLI%3E%3CLI%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CEM%3E%E2%80%9EWieder%20die%20Tatsache%20modellieren%3C%2FEM%3E%3C%2FFONT%3E%3CEM%3E%3CFONT%20color%3D%22%230000FF%22%3E%20oder%20von%20Ihrem%20DOE%20w%C3%BCrden%20einen%20Einblick%20geben%2C%20ob%20die%20Faktoren%20die%20Variabilit%C3%A4t%20dieser%20Variationskomponenten%20beeinflussen.%E2%80%9C%3C%2FFONT%3E%20-%3C%2FEM%3E%20Ich%20habe%20dies%20als%20Wiederholung%20des%20Vorschlags%20aus%20dem%20vorherigen%20Beispiel%20angesehen%2C%20das%20Sie%20bereitgestellt%20haben%2C%20war%20mir%20jedoch%20nicht%20sicher%2C%20was%20Sie%20mit%20%22Variationskomponenten%22%20meinen.%20Meinst%20du%20hier%20die%20Mess-%20und%20Versuchsfehler%3F%3C%2FLI%3E%3CLI%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CEM%3E%22Nat%C3%BCrlich%20k%C3%B6nnen%20Sie%20mehrere%20%22Schichten%22%20von%20verschachtelten%20Komponenten%20erstellen%2C%20um%20festzustellen%2C%20ob%20Faktoren%20Varianzkomponenten%20beeinflussen.%22%20%3C%2FEM%3E%3C%2FFONT%3E%3CEM%3E-%3C%2FEM%3E%20wie%20w%C3%BCrde%20man%20das%20angehen%3F%20Haben%20Sie%20ein%20Beispiel%2C%20auf%20das%20ich%20mich%20vielleicht%20beziehen%20k%C3%B6nnte%3F%3C%2FLI%3E%3C%2FOL%3E%3CP%3ENochmals%20vielen%20Dank%20f%C3%BCr%20Ihre%20Zeit!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-585853%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-585853%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHallo%20Viktor!%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EVielen%20Dank%20f%C3%BCr%20Ihre%20ausf%C3%BChrliche%20Antwort%20und%20die%20Aufschl%C3%BCsselung%20der%20Abweichungsquellen%2C%20ich%20fand%20sie%20unglaublich%20hilfreich.%3C%2FP%3E%3CP%3E1-%20Modellvarianz%20war%20etwas%2C%20das%20ich%20nicht%20in%20Betracht%20gezogen%20habe%2C%20aber%20es%20ist%20ein%20ausgezeichneter%20Punkt!%20Interessant%20bei%20dieser%20Betrachtung%20ist%2C%20dass%20einer%20der%20empfohlenen%20Faktoren%2C%20die%20das%20Modell%20basierend%20auf%20meinen%20Erw%C3%BCnschtheitskriterien%20vorgeschlagen%20hat%2C%20in%20einen%20Bereich%20f%C3%A4llt%2C%20in%20dem%20die%20Modellvarianz%20am%20h%C3%B6chsten%20ist.%20Ich%20bin%20mir%20nicht%20sicher%2C%20ob%20dies%20ein%20Problem%20sein%20sollte%2C%20da%20die%20ANOVA-%20und%20Mangel%20an%20Anpassungsanalysen%20meines%20Modells%20darauf%20hindeuten%2C%20dass%20das%20Modell%20gut%20angepasst%20ist%20und%20die%20Eingabefaktoren%20zur%20Vorhersage%20der%20Antwort%20verwenden%20kann.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3E2%20und%203.%20Das%20ist%20genau%20das%2C%20wonach%20ich%20suche%20-%20das%20einzige%20Problem%20hier%20sind%20die%20Kosten%2C%20am%20liebsten%20w%C3%BCrde%20ich%20jeden%20experimentellen%20Lauf%20wiederholen%2C%20aber%20ich%20werde%20einfach%20nicht%20die%20Ressourcen%20daf%C3%BCr%20haben.%20Kann%20ich%20trotzdem%20bestimmte%20Punkte%20ausw%C3%A4hlen%2C%20die%20ich%20modellieren%20kann%2C%20um%20die%20Antwort-%20und%20Eingabevarianz%20zu%20bewerten%3F%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EVielen%20Dank%20f%C3%BCr%20eure%20bisherige%20Hilfe%20und%20Anregungen!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-585854%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-585854%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHallo%20Jed%2C%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EVielen%20Dank%20daf%C3%BCr%2C%20das%20ist%20ein%20super%20n%C3%BCtzliches%20Tool!%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EIch%20gehe%20davon%20aus%2C%20dass%20das%20Y%20hier%20einfach%20die%20Antwort%20und%20nicht%20die%20Varianz%20der%20Antwort%20ist%2C%20und%20daher%20w%C3%A4re%20es%20am%20n%C3%BCtzlichsten%2C%20den%20Bereich%20von%20Y%20mit%20der%20%C3%9Cberpr%C3%BCfung%20zu%20vergleichen.%20Angesichts%20der%20Tatsache%2C%20dass%20hier%20davon%20ausgegangen%20wird%2C%20dass%20gen%C3%BCgend%20Wiederholungen%20von%20Versuchsl%C3%A4ufen%20durchgef%C3%BChrt%20wurden%2C%20wissen%20Sie%2C%20wie%20viele%20Wiederholungen%20mindestens%20erforderlich%20sind%3F%20Ich%20k%C3%B6nnte%20wahrscheinlich%207-10%20L%C3%A4ufe%20wiederholen%2C%20aber%20ich%20m%C3%BCsste%20das%20Design%20irgendwie%20erweitern%2C%20um%20diese%20Wiederholungen%20einzubeziehen%2C%20da%20ich%20in%20meinem%20urspr%C3%BCnglichen%20Design%20nur%20Mittelpunkte%20wiederholt%20habe.%20Haben%20Sie%20weitere%20Vorschl%C3%A4ge%3F%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EVielen%20Dank%20f%C3%BCr%20Ihre%20Hilfe!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-585915%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-585915%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHi%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F41943%22%20target%3D%22_blank%22%3E%20%40aaidaa%3C%2FA%3E%20%2C%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EFrohes%20neues%20Jahr%20!%20Und%20danke%20f%C3%BCr%20deine%20Antwort.%3C%2FP%3E%3CP%3EBetrachten%20Sie%20Ihre%20verschiedenen%20Punkte%3A%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3COL%3E%3CLI%3EDas%20Finden%20eines%20Optimums%20in%20einem%20Bereich%20gro%C3%9Fer(r)%20Varianz%20ist%20eine%20interessante%20Situation.%20Was%20Sie%20herausfinden%20m%C3%BCssen%2C%20ist%2C%20wie%20gro%C3%9F%20diese%20Prognoseabweichung%20im%20Vergleich%20zu%20Ihrem%20Ziel%20und%20Ihren%20Erwartungen%20ist.%20Es%20kann%20kl%C3%BCger%20sein%2C%20einige%20Validierungsl%C3%A4ufe%20in%20diesen%20optimalen%20Einstellungen%20durchzuf%C3%BChren%2C%20um%20die%20Varianz%20zu%20verringern%20und%20die%20wirklich%20vorhergesagten%20optimalen%20Leistungen%2FAntworten%20an%20diesem%20Punkt%20zu%20bewerten.%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FLI%3E%3CLI%3E(%26amp%3B%203.)%20Wie%20in%20%22Optimal%20Design%20of%20Experiments%3A%20a%20case%20study%20approach%22%20von%20Bradley%20Jones%20und%20Peter%20Goos%20beschrieben%3A%20%22Der%20beste%20Weg%2C%20einen%20neuen%20experimentellen%20Test%20zuzuweisen%2C%20ist%20die%20Behandlungskombination%20mit%20der%20h%C3%B6chsten%20Vorhersagevarianz%22.%20Um%20Ihre%20Bem%C3%BChungen%20zu%20optimieren%2C%20k%C3%B6nnen%20Sie%20iterativ%20neue%20L%C3%A4ufe%20an%20Orten%20mit%20der%20h%C3%B6chsten%20Varianz%20in%20Ihrem%20Experimentierraum%20erstellen.%3CBR%20%2F%3E%20-%20Wenn%20Sie%20sich%20die%20Modellabweichung%20ansehen%2C%20k%C3%B6nnen%20Sie%20sich%20das%20Skript%20%22Evaluate%20Design%22%20ansehen%20und%20im%20roten%20Dreieck%20des%20%22Prediction%20Variance%20Profile%22%20auf%20%22Maximize%20Variance%22%20klicken.%20Dadurch%20erhalten%20Sie%20die%20Einstellungen%20der%20Faktoren%2C%20bei%20denen%20die%20Modellvarianz%20am%20h%C3%B6chsten%20ist%2C%20und%20k%C3%B6nnen%20eine%20gute%20Richtung%20angeben%2C%20wo%20Sie%20ein%20neues%20Experiment%20in%20Ihrem%20DoE%20hinzuf%C3%BCgen%20k%C3%B6nnen.%3CBR%20%2F%3E%20-%20F%C3%BCr%20die%20Input-%20und%20Response-Varianz%20k%C3%B6nnen%20Sie%2C%20wenn%20Sie%20bereits%20Kenntnisse%20%C3%BCber%20die%20Varianz%20der%20Faktoren%20(und%2Foder%20%C3%BCber%20die%20Response-Messungen%2C%20z.%20B.%20dank%20fr%C3%BCherer%20MSA-Studien)%20haben%2C%20diese%20Informationen%20auch%20%C3%BCber%20die%20verwenden%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fsupport%2Fhelp%2Fen%2F17.0%2F%23page%2Fjmp%2Fsimulator.shtml%23%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20Simulator%20(jmp.com)%3C%2FA%3E%20Plattform%2C%20um%20simulierte%20Verteilungen%20Ihrer%20Antworten%20mit%20den%20optimalen%20Einstellungen%20zu%20erstellen%20und%20den%20Mittelwert%20und%20die%20Standardabweichung%20Ihrer%20verschiedenen%20Antworten%20unter%20Ber%C3%BCcksichtigung%20der%20Varianz%20der%20von%20Ihnen%20eingegebenen%20Eingaben%20und%20Antworten%20auszuwerten.%3CBR%20%2F%3E%20-%20Wenn%20Sie%20sich%20die%20%22endg%C3%BCltige%2Fgesamte%22%20Varianz%20ansehen%20(die%20wahrscheinlich%20eine%20Mischung%20aus%20Modellvarianz%2C%20Antwortvarianz%20und%20Eingabevarianz%20sein%20wird%2C%20wenn%20Sie%20Replikate%20haben)%2C%20k%C3%B6nnte%20eine%20M%C3%B6glichkeit%2C%20fortzufahren%2C%20darin%20bestehen%2C%20die%20Spalte%20%22PredSE%22%20von%20zu%20speichern%20jeder%20Ihrer%20Antworten%2C%20und%20verwenden%20Sie%20den%20Profiler%20(aus%20dem%20Men%C3%BC%20%E2%80%9EGrafik%E2%80%9C%2C%20dann%20%E2%80%9EProfiler%E2%80%9C)%20mit%20der%20Formel%20der%20vorhergesagten%20Standardfehler%20Ihrer%20Antworten%20(und%20suchen%20Sie%20dann%2C%20um%20PredSE%20Ihrer%20Antworten%20zu%20maximieren%2C%20mit%20der%20M%C3%B6glichkeit%2C%20die%20relative%20Wichtigkeit%20zu%20%C3%A4ndern%20Ihrer%20Antworten%2C%20falls%20dies%20f%C3%BCr%20Ihren%20Fall%20relevant%20ist)%2C%20um%20festzustellen%2C%20worauf%20Sie%20Ihre%20Bem%C3%BChungen%20konzentrieren%20und%20neue%20Versuchsl%C3%A4ufe%20wiederholen%20oder%20erstellen%20k%C3%B6nnen.%20Sie%20k%C3%B6nnen%20auch%20einen%20Blick%20auf%20die%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fsupport%2Fhelp%2Fen%2F17.0%2F%23page%2Fjmp%2Fdesign-space-profiler.shtml%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20Design%20Space%20Profiler%20(jmp.com)%3C%2FA%3E%20Plattform%20von%20JMP%2017%2C%20um%20zu%20beurteilen%2C%20ob%20Sie%20angesichts%20einiger%20Einschr%C3%A4nkungen%2FSpezifikationen%20f%C3%BCr%20Ihr%20Antwortziel%20optimale%20Punkte%20finden%20k%C3%B6nnen%20(und%20wie%20viele%20der%20Proben%20in%20den%20Spezifikationen%20enthalten%20w%C3%A4ren).%20Sie%20k%C3%B6nnen%20Ihren%20Antworten%20auch%20PredSE%20hinzuf%C3%BCgen%2C%20um%20eine%20Einschr%C3%A4nkung%20f%C3%BCr%20die%20Standardabweichung%20jeder%20der%20Antworten%20anzugeben%2C%20wenn%20Sie%20eine%20Vorstellung%20von%20der%20gew%C3%BCnschten%20Genauigkeit%20haben.%3C%2FLI%3E%3C%2FOL%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EAlle%20diese%20Ans%C3%A4tze%20sind%20sehr%20komplement%C3%A4r%20und%20k%C3%B6nnen%20wirklich%20hilfreich%20sein%2C%20um%20die%20Bem%C3%BChungen%20auf%20die%20informativsten%20Experimente%20zu%20konzentrieren%2C%20die%20durchgef%C3%BChrt%20werden%20sollen.%3C%2FP%3E%3CP%3EIch%20hoffe%2C%20diese%20neuen%20Kommentare%20werden%20Ihnen%20helfen%2C%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-586031%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-586031%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ENachverfolgen%3A%3C%2FP%3E%0A%3CP%3EWiederholungen%20und%20Wiederholungen%20sind%20zwei%20v%C3%B6llig%20unterschiedliche%20Strategien%20zum%20Experimentieren.%20Wiederholungen%20sind%20unabh%C3%A4ngige%20L%C3%A4ufe%20derselben%20experimentellen%20Behandlungen%20(dies%20bedeutet%20normalerweise%2C%20dass%20sie%20zu%20unterschiedlichen%20Zeiten%20durchgef%C3%BChrt%20werden%2C%20oft%20randomisiert.%20Wenn%20Sie%20dies%20in%20Bl%C3%B6cken%20tun%2C%20k%C3%B6nnen%20Sie%20etwas%20%C3%BCber%20langfristige%20Variationskomponenten%20lernen).%20Jede%20Behandlung%20ergibt%20eine%20eigenst%C3%A4ndige%20Versuchseinheit.%20%26nbsp%3B%3C%2FP%3E%0A%3CP%3EWiederholungen%20sind%20nicht%20unabh%C3%A4ngig%20von%20den%20Behandlungen.%20Sie%20sind%2C%20mangels%20eines%20universellen%20Wortes%2C%20mehrere%20%22Datenpunkte%22%20f%C3%BCr%20dieselbe%20Behandlungskombination.%20Sie%20sind%20keine%20unabh%C3%A4ngigen%20Versuchseinheiten%20(EU)%20und%20damit%20keine%20zus%C3%A4tzlichen%20Freiheitsgrade.%20Wiederholungen%20k%C3%B6nnen%20aus%20mehreren%20Situationen%2FGr%C3%BCnden%20durchgef%C3%BChrt%20werden%3A%3C%2FP%3E%0A%3CP%3E1.%20Wenn%20die%20EU%20mehrmals%20an%20genau%20derselben%20Stelle%20gemessen%20wird%2C%20w%C3%BCrde%20dies%20den%20Messfehler%20absch%C3%A4tzen.%20Wenn%20Sie%20diese%20Datenpunkte%20dann%20mitteln%2C%20w%C3%BCrden%20Sie%20den%20Messfehler%20in%20der%20Studie%20(Varianz%2Fn)%20reduzieren%20und%20die%20Genauigkeit%20des%20Experiments%20erh%C3%B6hen.%3C%2FP%3E%0A%3CP%3E2.%20Wenn%20jede%20EU%20mehrmals%20an%20verschiedenen%20Orten%20innerhalb%20der%20EU%20gemessen%20wird%2C%20w%C3%BCrde%20dies%20eine%20Sch%C3%A4tzung%20sowohl%20des%20Messfehlers%20als%20auch%20der%20Variation%20innerhalb%20der%20Stichprobe%20liefern%20(nat%C3%BCrlich%20k%C3%B6nnten%20Sie%20jeden%20Ort%20innerhalb%20der%20EU%20mehrmals%20messen%2C%20um%20die%20Messung%20von%20der%20Variation%20innerhalb%20der%20EU%20zu%20trennen).%20Eine%20erneute%20Mittelwertbildung%20reduziert%20die%20Variation%20der%20Datenpunkte%20innerhalb%20der%20Behandlung%2C%20aber%20in%20diesem%20Fall%20umfasst%20diese%20Variation%20auch%20die%20Variation%20innerhalb%20der%20Stichprobe%2C%20sodass%20Sie%20vielleicht%20daran%20interessiert%20sein%20k%C3%B6nnten%2C%20ob%20die%20Behandlungen%20diese%20kurzfristige%20Variation%20innerhalb%20der%20Stichprobe%20beeinflussen.%20Sie%20k%C3%B6nnen%20dies%20tun%2C%20indem%20Sie%20eine%20Antwortvariable%20in%20Form%20einer%20Streuung%20(z.%20B.%20Bereich%2C%20Standardabweichung%2C%20Varianz)%20hinzuf%C3%BCgen.%20Wenn%20es%20um%20Messfehler%20ginge%2C%20w%C3%BCrde%20ich%20jeden%20Ort%20innerhalb%20der%20Stichprobe%20mehrmals%20messen%20und%20die%20Durchschnittswerte%20verwenden%2C%20um%20die%20Varianz%20innerhalb%20der%20Stichprobe%20zu%20sch%C3%A4tzen.%3C%2FP%3E%0A%3CP%3E3.%20Wenn%20die%20EU%20aus%20mehreren%20Proben%20besteht%2C%20die%20jeweils%20einmal%20gemessen%20wurden%2C%20dann%20w%C3%BCrden%20die%20Datenpunkte%20den%20Messfehler%20innerhalb%20der%20Variation%20von%20Probe%20und%20Probe%20zu%20Probe%20widerspiegeln%20(nat%C3%BCrlich%20k%C3%B6nnten%20Sie%20wie%20oben%20die%20Vielzahl%20der%20Varianzkomponenten%20trennen%20und%20zuweisen%2C%20je%20nachdem%2C%20wie%20Sie%20nehmen%20die%20Datenpunkte).%20Auch%20hier%20k%C3%B6nnen%20Sie%20Mittelwerte%20verwenden%2C%20um%20die%20Variation%20zu%20reduzieren%2C%20oder%20verschachtelte%20Komponenten%20von%20Variationskonzepten%20verwenden%2C%20die%20verschiedenen%20Varianzen%20f%C3%BCr%20jede%20Komponente%20zuweisen%20und%20eine%20Antwortvariable%20in%20Form%20einer%20Variation%20erstellen%2C%20um%20sie%20in%20Ihrem%20Experiment%20zu%20modellieren.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EZu%20deinen%20Kommentaren%3A%3C%2FP%3E%0A%3CP%3EBeispiel%201%3A%3C%2FP%3E%0A%3COL%3E%0A%3CLI%3E%3CEM%3E%3CFONT%20color%3D%22%230000FF%22%3E%E2%80%9ENehmen%20wir%20zum%20Beispiel%20an%2C%20Sie%20haben%20bei%20jeder%20Behandlung%20eine%20Probe%20entnommen%20und%20diese%20wird%20an%20mehreren%20Stellen%20%C3%BCber%20die%20Probe%20hinweg%20gemessen%20(eine%20Versuchseinheit%20f%C3%BCr%20jede%20Behandlung).In%20diesem%20Fall%20w%C3%A4re%20die%20Variation%20darauf%20zur%C3%BCckzuf%C3%BChren%2C%20dass%20sich%20x%20innerhalb%20des%20Proben-%20und%20Messfehlers%20%C3%A4ndert.%E2%80%9C%3C%2FFONT%3E%20-%3C%2FEM%3E%3CSPAN%3E%20Ich%20glaube%2C%20Sie%20beziehen%20sich%20auf%20die%20erneute%20Messung%20der%20Proben%20des%20Versuchslaufs%2C%20um%20den%20Messfehler%20zu%20verstehen%3F%3C%2FSPAN%3E%3CFONT%20color%3D%22%23FF0000%22%3E%3CSPAN%3EIn%20diesem%20Fall%20ist%20die%20Variation%20auf%20BEIDE%20zur%C3%BCckzuf%C3%BChren%3C%2FSPAN%3E%20Messfehler%20und%20innerhalb%20der%20Probe%20nicht%20nur%20Messfehler%3C%2FFONT%3E%3C%2FLI%3E%0A%3CLI%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CEM%3E%E2%80%9EWenn%20Sie%20die%20Faktoren%20in%20Ihrem%20Experiment%20modellieren%2C%20k%C3%B6nnen%20Sie%20erfahren%2C%20ob%20Faktoren%20(oder%20Faktorinteraktionen)%20diese%20verwechselten%20Variationskomponenten%20beeinflussen%20(wahrscheinlich%20innerhalb%20der%20Stichprobe%2C%20da%20es%20unwahrscheinlich%20ist%2C%20dass%20die%20Faktoren%20in%20Ihrem%20Experiment%20die%20Messfehler%20beeinflussen).%E2%80%9C%3C%2FEM%3E%3C%2FFONT%3EWenn%20Sie%20die%20Faktoren%20in%20meinem%20Experiment%20modellieren%2C%20meinen%20Sie%2C%20sie%20so%20zu%20modellieren%2C%20dass%20die%20Varianz%20der%20Antwort%20hier%20die%20Antwort%20ist%3F%20%3CFONT%20color%3D%22%23FF0000%22%3EJa%2C%20aber%20wenn%20ich%20mir%20Sorgen%20um%20das%20Messsystem%20gemacht%20h%C3%A4tte%2C%20h%C3%A4tte%20ich%20jeden%20Standort%20zweimal%20gemessen%20und%20die%20Durchschnittswerte%20dieser%20verwendet%2C%20da%20dies%20den%20Messfehler%20verringern%20w%C3%BCrde.%3C%2FFONT%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3E%3CSPAN%3EBeispiel%202%3C%2FSPAN%3E%3C%2FP%3E%0A%3COL%3E%0A%3CLI%3E%3CSPAN%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CEM%3E%22Ein%20weiteres%20Beispiel%3A%20Nehmen%20wir%20an%2C%20Sie%20erhalten%20mehrere%20Proben%20f%C3%BCr%20jede%20Behandlung%20(immer%20noch%20eine%20Versuchseinheit)%20und%20messen%20jede%20Probe.%20Der%20Grund%20f%C3%BCr%20die%20Variation%20in%20diesem%20Fall%20ist%20die%20Ver%C3%A4nderung%20des%20x%20von%20Probe%20zu%20Probe%2C%20innerhalb%20von%20Probe%20und%20Messfehler.%E2%80%9C%3C%2FEM%3E%3C%2FFONT%3EWenn%20Sie%20sich%20auf%20die%20Faktoren%20beziehen%2C%20die%20sich%20von%20Probe%20zu%20Probe%20%C3%A4ndern%20-%20beziehen%20Sie%20sich%20auf%20experimentelle%20Fehler%2C%20z.%20B.%20Pipettierfehler%2C%20die%20eine%20Variation%20zwischen%20Faktoren%20verursachen%3F%20%3CFONT%20color%3D%22%23FF0000%22%3EKeine%20einfache%20Antwort%20%C3%BCber%20dieses%20Forum%20...%20Wenn%20die%20Variation%20zugeordnet%20werden%20kann%2C%20w%C3%BCrde%20ich%20es%20nicht%20unbedingt%20als%20experimentellen%20Fehler%20bezeichnen.%20Wenn%20Sie%20randomisieren%2C%20kann%20der%20Fehler%20nicht%20zugeordnet%20werden%20und%20es%20w%C3%A4re%20ein%20experimenteller%20Fehler.%20Ich%20schlage%20vor%2C%20dass%20sich%20zwischen%20den%20Proben%20m%C3%B6glicherweise%20mehrere%20x%20%C3%A4ndern.%20Es%20wird%20eine%20Funktion%20des%20Prozesses%20sein%2C%20der%20die%20Proben%20herstellt.%20Welche%20x%20%C3%A4ndern%20sich%20im%20Prozess%20jedes%20Mal%2C%20wenn%20Sie%20eine%20Probe%20machen%3F%20Normalerweise%20%C3%A4ndern%20sich%20x%20mit%20einer%20h%C3%B6heren%20Frequenz%2C%20da%20dies%20eine%20kurzfristige%20Variation%20ist.%20Ich%20w%C3%BCrde%20den%20Prozess%20abbilden%2C%20um%20diese%20Variablen%20zu%20identifizieren.%3C%2FFONT%3E%3C%2FSPAN%3E%3C%2FLI%3E%0A%3CLI%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CEM%3E%E2%80%9EWieder%20die%20Tatsache%20modellieren%3C%2FEM%3E%3C%2FFONT%3E%3CEM%3E%3CFONT%20color%3D%22%230000FF%22%3E%20oder%20von%20Ihrem%20DOE%20w%C3%BCrden%20einen%20Einblick%20geben%2C%20ob%20die%20Faktoren%20die%20Variabilit%C3%A4t%20dieser%20Variationskomponenten%20beeinflussen.%E2%80%9C%3C%2FFONT%3E%20-%3C%2FEM%3E%20Ich%20habe%20dies%20als%20Wiederholung%20des%20Vorschlags%20aus%20dem%20vorherigen%20Beispiel%20angesehen%2C%20das%20Sie%20bereitgestellt%20haben%2C%20war%20mir%20jedoch%20nicht%20sicher%2C%20was%20Sie%20mit%20%22Variationskomponenten%22%20meinen.%20Meinst%20du%20hier%20die%20Mess-%20und%20Versuchsfehler%3F%20%3CFONT%20color%3D%22%23FF0000%22%3ENein%20...%20Entschuldigung%2C%20ich%20kann%20das%20nicht%20n%C3%A4her%20erl%C3%A4utern.%20Sie%20m%C3%BCssen%20die%20Komponenten%20von%20Variationsstudien%20verstehen%20(siehe%20Verschachtelte%20oder%20hierarchische%20Studien).%3C%2FFONT%3E%3C%2FLI%3E%0A%3CLI%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CEM%3E%22Nat%C3%BCrlich%20k%C3%B6nnen%20Sie%20mehrere%20%22Schichten%22%20von%20verschachtelten%20Komponenten%20erstellen%2C%20um%20festzustellen%2C%20ob%20Faktoren%20Varianzkomponenten%20beeinflussen.%22%20%3C%2FEM%3E%3C%2FFONT%3E%3CEM%3E-%3C%2FEM%3E%20wie%20w%C3%BCrde%20man%20das%20angehen%3F%20Haben%20Sie%20ein%20Beispiel%2C%20auf%20das%20ich%20mich%20vielleicht%20beziehen%20k%C3%B6nnte%3F%20%3CFONT%20color%3D%22%23FF0000%22%3EAuch%20hier%20m%C3%BCssen%20Sie%20die%20oben%20erw%C3%A4hnten%20CoV-Studien%20verstehen.%3C%2FFONT%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3E%3CFONT%20color%3D%22%23FF0000%22%3EFang%20hier%20an%3A%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%3E%3CFONT%20color%3D%22%23FF0000%22%3E%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fsupport%2Fhelp%2Fen%2F17.0%2F%3Fos%3Dmac%26amp%3Bsource%3Dapplication%23page%2Fjmp%2Fstatistical-details-for-variance-components.shtml%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3Ehttps%3A%2F%2Fwww.jmp.com%2Fsupport%2Fhelp%2Fen%2F17.0%2F%3Fos%3Dmac%26amp%3Bsource%3Dapplication%23page%2Fjmp%2Fstatistical-details-for-variance-components.shtml%3C%2FA%3E%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CFONT%20color%3D%22%23FF0000%22%3EHier%20ist%20ein%20gutes%20Papier%3A%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%20style%3D%22font-weight%3A%20400%3B%22%3ESander%2C%20D.%2C%20Sanders%2C%20R.%2C%20und%20Leitnaker%2C%20M.%20(1994)%20%E2%80%9E%3CEM%3E%20Die%20analytische%20Untersuchung%20zeitabh%C3%A4ngiger%20Varianzkomponenten%3C%2FEM%3E%20%E2%80%9C%2C%3CU%3E%20Qualit%C3%A4tstechnik%3C%2FU%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-586402%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Wie%20wiederholt%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-586402%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EFrohes%20neues%20Jahr!%20und%20vielen%20Dank%20an%20alle%2C%20diese%20Diskussion%20war%20super%20hilfreich!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-584504%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EWie%20kann%20man%20Punkte%20%C3%BCber%20Extremit%C3%A4ten%20hinweg%20in%20einem%20benutzerdefinierten%20DoE%20wiederholen%2C%20um%20die%20Varianz%20besser%20zu%20verstehen%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-584504%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHallo!%3C%2FP%3E%3CP%3EIch%20optimiere%20derzeit%20ein%20experimentelles%20Verfahren%20und%20habe%20mich%20f%C3%BCr%20ein%20benutzerdefiniertes%20Design%20mit%204%20kontinuierlichen%20Variablen%20mit%20jeweils%202%20Ebenen%20und%20einer%20einzelnen%20kategorialen%20Variablen%20mit%203%20Ebenen%20entschieden.%20Ich%20habe%20Mittelpunkte%20(repliziert)%20eingef%C3%BCgt%2C%20um%20eine%20gewisse%20Varianzanalyse%20zu%20erm%C3%B6glichen%2C%20und%20das%20Modell%20wird%20mit%20RSM-Interaktionen%20generiert%2C%20die%20nicht%20%C3%BCber%202-Faktor-Interaktionen%20hinausgehen.%20Die%20Darstellungen%20der%20Residuen%20nach%20Diagrammen%20erweisen%20sich%20als%20sehr%20n%C3%BCtzlich%2C%20jedoch%20nur%20in%20Bezug%20auf%20die%20Ausgabe.%20Gibt%20es%20eine%20M%C3%B6glichkeit%2C%20festzustellen%2C%20ob%20es%20zu%20einer%20Zunahme%20der%20Varianz%20(Abnahme%20der%20Wiederholbarkeit)%20in%20Verbindung%20mit%20einem%20extremen%20Ende%20eines%20der%20Faktoren%2FWechselwirkungen%20kommt%3F%20Das%20hei%C3%9Ft%2C%20wie%20kann%20ich%20die%20Variabilit%C3%A4t%20in%20Bezug%20auf%20die%20Faktoren%20im%20Designraum%20und%20nicht%20nur%20in%20Bezug%20auf%20die%20Reaktion%20beurteilen%3F%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EVielen%20Dank%20f%C3%BCr%20Ihre%20Hilfe%20im%20Voraus!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-LABS%20id%3D%22lingo-labs-584504%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CLINGO-LABEL%3EVersuchsplanung%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E
Choose Language Hide Translation Bar
aaidaa
Level II

How to repeat points across extremities in a custom DoE to better understand variance?

Hi!

I am currently optimising an experimental procedure and have opted for a custom design with 4 continuous variables with 2 levels each and a single 3 level-categorical variable. I have included centre points (replicated) to allow for some analysis of variance and the model is generated with RSM interactions not going beyond 2 factor interactions. The residual by plots prove to be very useful but only in relation to the output. Is there a way in which one could see whether there is an increase in variance (decrease in repeatability) in association with an extreme end of one of the factors/interactions. i.e. how can I assess variability in relation to the factors in the design space as opposed to just the response. 

 

Thank you for your help before hand!

12 REPLIES 12
aaidaa
Level II

Re: How to repeat points across extremities in a custom DoE to better understand variance?

Hi Victor!

 

Thank you for your detailed response and  for the breakdown of variance sources, I found it incredibly helpful.

1- Model variance wasn't something I considered but is an excellent point! What's interesting when looking at this is that one of the recommended factors that the model suggested based on my desirability criteria falls into a range where the model variance is highest. I'm not sure if this should be a concern given that the ANOVA and lack of fit analyses of my model suggest that the model is well fitted and can use the input factors to predict the response.

 

2 and 3. This is exactly what I'm looking for - the only issue here is expense, ideally I'd like to repeat every experimental run but I simply will not have the resources to do so. Is there anyway to select certain points that I can model that will allow me to assess the response + input variance?

 

Thank you for your help and suggestions thus far!

Victor_G
Super User

Re: How to repeat points across extremities in a custom DoE to better understand variance?

Hi @aaidaa,

 

Happy New Year ! And thank you for your response.

Looking at your different points :

 

  1. Finding an optimum in an area of large(r) variance is an interesting situation. What you have to figure out is how large is this prediction variance compared to your target and expectations. It may be wiser to do some validation runs in this optimum settings, to decrease variance and assess the real predicted optimum performances/responses at this point.

  2. (& 3.) As described in "Optimal Design of Experiments: a case study approach" by Bradley Jones and Peter Goos : "The best way to allocate a new experimental test is at the treatment combination with the highest prediction variance". In order to optimize your efforts, you can iteratively create new runs at locations with the highest variance in your experimental space.
    - Looking at the model variance, you can look at the script "Evaluate Design" and in the red triangle of the "Prediction Variance Profile", click on "Maximize Variance". This will give you the settings of the factors where the model variance is the highest, and can provide a good direction on where to add a new experiment in your DoE.
    - For the input and response variance, if you already have knowledge on the variance of the factors (and/or on the response measurements, thanks to previous MSA studies for example), you can also use this information through the Simulator (jmp.com) platform to be able to create simulated distributions of your responses at the optimum settings and evaluate mean and standard deviation of your different responses, given the variance of inputs and responses you have entered.
    - If you're looking at the "final/total" variance (which will probably be a mix of model variance, response variance and input variance if you have replicates), one way to continue could be to save the column "PredSE" of each of your responses, and using the profiler (from "Graph" menu, then "Profiler") with the formula of predicted standard errors of your responses (and then search to maximize PredSE of your responses, with the possibility to change the relative importance of your responses if it is relevant for your case) to determine where you can focus your efforts and repeat or create new experimental runs. You can also have a look at the Design Space Profiler (jmp.com) platform from JMP 17 to assess if you're able to find optimum points (and how much of the samples would be in specs), given some constraints/specifications on your responses target. You can also add PredSE of your responses to specify a constraint on the standard deviation of each of the responses if you have an idea on the precision you would like to have.

 

All these approachs are quite complementary, and can be really helpful to focus the efforts on the most informative experiments to run.

I hope these new comments will help you, 

Victor GUILLER

"It is not unusual for a well-designed experiment to analyze itself" (Box, Hunter and Hunter)
aaidaa
Level II

Re: How to repeat points across extremities in a custom DoE to better understand variance?

Happy new year! and thank you so much everyone this discussion has been super helpful! 

Recommended Articles