Wow - I didn't expect much response. Thank you for taking the time to think through my question so much. Looking back, I definitely see some ambiguities and lack of info in my question. I'll try to respond to your points and make clarifications.
1. What I meant by this was that when I took my DOE class in grad school, it was entirely linear (ie. factorial) and quadratic (ie. Response Surface) designs. There wasn't at all a discussion of nonlinear modeling, so I assumed that, given that 1) I was using a nonlinear model and 2) it was a specific model conceived with a specific application in mind (adsorption from a fluid to a surface in this case) rather than a generic nonlinear model (whatever that would be as analogous to factorial designs), this would be nonstandard, even though the general idea of DOE would still apply. Maybe I have too narrow an understanding of DOE.
2. This is a very old model, dating back to the 1910's, describing adsorption of some species (atoms, molecules, etc) from a fluid to a surface. All that is included is the concentration of the adsorbing species. It is assumed that other parameters (pressure, temperature, acidity of the medium, etc) are constant. We are testing adsorption systems with this model at different temperatures. Presumably the parameters will be different at different temperatures.
3. You are correct. I should have used the correct terminology. Thank you for reminding me of that. We are currently testing 15 levels (3 replicates) of the single factor and fitting the model to it. To the second half of your question, this is where I am self-admittedly wholly ignorant. My understanding is that with a polynomial, the number of points needed to fit a line is equal to the order of the polynomial + 1. So linear (O=1) needs 2 points, quadratic needs 2,.... trigintic needs 31. But what about for any nonlinear? My first thought would be that we need the number of parameters+1. So in my specific example of whats called a "Langmuir Adsorption Isotherm," there are 2 parameters, so at least 3 levels would be needed. But that's entirely on intuition that didn't get past low 300 level math classes and a single graduate DOE class, so I'm happy to be corrected on that. The literature in this field, however, is replete with experiments that often use many, many, many levels, frequently more than we do, so using a 3 level (or even 2 level) DOE would need to have a statistical justification. And I don't have the statistics training to supply that well. If you have a reference or your own explanation, I would very much appreciated either or both.
4. So I may be misunderstanding your question, but we are doing what would probably go under split-plot (or strip plot, its hard to say because its very difficult to do either correctly in our setting, due to materials changing over time during prep, etc). But we aren't including batches in the model because it is a physical model that assumes we a hypothetical system with intrinsic constants rather than specific experimental plan that incorporates real world issues like batch to batch variation into a statistical framework. The reason for replicates is just to account for error. The experiments, given the setup, are prone to error because things like temperature are not as well controlled as the ideal case (even with expensive equipment, its very difficult), and so replicates are helping the error handling. Also, I personally haven't published papers, but some of the post-docs in my lab have stated that higher impact journals typically want replicates and 3 is a standard number. Maybe I misunderstood your question though.
5. As I explain to my mom, an english major, I "put metals on sand" :). Basically I'm adsorbing metal onto different materials to be used in catalysis. We have a set of 3 metals and 6 adsorbing materials. Each adsorbing material will interact with each metal differently, which in turn affects the catalytic "activity." In addition, each metal does different types of catalysis (though there is some overlap). Basically the metals do different sets of reactions, and then the adsorbing material, based on its interaction with the metal, will promote (or whatever the reverse of promote is) certain subsets of those reactions. Each metal-adsorbing material pair is what I'm calling a system. I've had the thought of making metal and adsorbing material each categorical variables, but then we enter the split/strip-plot world and I wouldn't even know where to begin in adding that to a model that is rationally derived from thermodynamic principles. To do that would add in dozens of material parameters and make the model functionally useless.
However, it would be interesting and very useful to take the parameters from the adsorption model for each system and then stick those into a statistical model where we can generally predict the parameters for the adsorption model by simply inputting into the final statistical model just the metals and adsorbing materials. But first we need the adsorption model parameters.
6. Ah. I took the nonlinear design example from the help file and just mimicked it. I don't know how to make it more useful than this discussion, because I think my issue is theoretical. Also, Mark Bailey correctly replicated the issue.
7. That makes sense. From what I have heard, however, a formal argument is better for publication.
Hopefully this answers your questions. Thank you again for your feedback.
Edward Hamer Chandler, Jr.