Here are the options that I see.
First, the Distribution platform. Choose "Tolerance Interval" item, then choose "Nonparametric" method. See next two screenshots.
![peng_liu_0-1669561318189.png peng_liu_0-1669561318189.png](https://community.jmp.com/t5/image/serverpage/image-id/47650i655770740C850B0C/image-size/medium?v=v2&px=400)
![peng_liu_1-1669561391156.png peng_liu_1-1669561391156.png](https://community.jmp.com/t5/image/serverpage/image-id/47651i1E79E591CC0C836C/image-size/medium?v=v2&px=400)
Second, the Life Distribution platform. This platform was not designed to answer tolerance interval questions specifically. But I have explain how it can be repurposed via confidence intervals.
1.First launch the platform, the item is under Analyze > Reliability and Survival > Life Distribution. Configure dialog, and your data column goes into Y.
![peng_liu_0-1669561948915.png peng_liu_0-1669561948915.png](https://community.jmp.com/t5/image/serverpage/image-id/47655iCC49B98B83012247/image-size/medium?v=v2&px=400)
2. Change Confidence Level to 0.975. (Ignore the title shows 98% due to rounding in display, which is a bug I just noticed now. Ignore if column title organization may look different in your version, there is a change in the layout in JMP17.)
![peng_liu_1-1669561995083.png peng_liu_1-1669561995083.png](https://community.jmp.com/t5/image/serverpage/image-id/47656iB07752FDBDC4C668/image-size/medium?v=v2&px=400)
3. If Weibull is desired, first fit Weibull, and seems that your data fits the distribution well.
![peng_liu_2-1669562052554.png peng_liu_2-1669562052554.png](https://community.jmp.com/t5/image/serverpage/image-id/47657i570FAB7907F6C52B/image-size/medium?v=v2&px=400)
4. Choose "Custom Estimation" from the distribution result's menu.
![peng_liu_3-1669562111097.png peng_liu_3-1669562111097.png](https://community.jmp.com/t5/image/serverpage/image-id/47658iBA3A60C9DA0DF293/image-size/medium?v=v2&px=400)
5. Choose "Lower" in the following menu.
![peng_liu_4-1669562159980.png peng_liu_4-1669562159980.png](https://community.jmp.com/t5/image/serverpage/image-id/47659iCD6BF56AC2CA4595/image-size/medium?v=v2&px=400)
6. Enter 0.005 in the Probability. Record the lower bound.
![peng_liu_9-1669562461260.png peng_liu_9-1669562461260.png](https://community.jmp.com/t5/image/serverpage/image-id/47664i53C7383F1F9ABF7B/image-size/medium?v=v2&px=400)
7. Now change to "Upper"
![peng_liu_6-1669562304681.png peng_liu_6-1669562304681.png](https://community.jmp.com/t5/image/serverpage/image-id/47661i9C3F77A2A1F89861/image-size/medium?v=v2&px=400)
8. Enter 0.995 in the Probability. Record the upper bound. You may want to consider using Likelihood type bound for your sample size.
![peng_liu_8-1669562387714.png peng_liu_8-1669562387714.png](https://community.jmp.com/t5/image/serverpage/image-id/47663iF59906B99E87CE54/image-size/medium?v=v2&px=400)
The two bounds are the ones that I explained in item 4 of my previous response.