Thanks. Have never used that response screening tool for this use, adn the overview explains why it makes sense.
So I am re-testing our data using those tools now...but have not gotten answers back yet from design engineers on PRACTICAL SiGNIFICANCE (I tend to use Cpk tests and if marginal, I use simple p-values....but if Cpk is very high, may ignore large shifts and not imporant. That designer input is coming....so can add that input as well.
The FALSE DISCOVERY RATE and the FDR plot are new to me.
I grew up on JMP 4 thru 8 mostly, now have 11. And I am engineer, not statistician. We also graph the data and share it with design and test engineers for starters...but management always asked for sorted p value tables as well for QA purposes in case design and test engineer miss important shifts TO THE CUSTOMER that was not known when datasheets were released and products were qualified. So we keep the raw data until 7th year of new product release, ten archive it in QA.
Lately clients include design centers that use foundries to make chips, and have little input on process details such as PM times, tool to tool matching issues, etc...except that they see variability in yield per lot. That triggers screening DOE's using "likely suspects" based on fail bin codes and parametric shifts, and foundries help run the experiments and share in the results..without simply dumping all their factory data into our DB for all products. Normally the Y by X plots and Dunnett tests show clearly the stongest signals and then replicates confirm the solution. But since DOE has to be replicated one batch at a time for the final process change qualifications, this new FDR approach may become useful as we learn to use it.
Thanks, the two of you showed us fast way to give mgmt what it requested, and possibly more robust solution long term.
By the way, datasheet spec limits can be wrong for new applications which get surprised when key parameters shift by several sigma within an 8 sigma tolerance window. So documenting raw data shifts graphically is important. And those case studies are archived with each set of product test specs and process flow specs for many years.
(Ford Motor taught us that years ago at Motorola.) GM is just catching up on those kinds of "small details."