Hi @Shad ,
How about trying Stepwise regression with forward selection? That way you will only include interactions that have data. Unbalanced is OK, but if there is missing data for a factor in an interaction, then you cannot use it. there is nothing one can estimate because the data is not there. If you have too many model effects and not enough data, then you cannot estimate all of the effects.
Stepwise with forward selection can help in these cases. Same with Decision trees.
Hope that helps.
Chris
Chris
Chris Kirchberg, M.S.2
Data Scientist, Life Sciences - Global Technical Enablement
JMP Statistical Discovery, LLC. - Denver, CO
Tel: +1-919-531-9927 ▪ Mobile: +1-303-378-7419 ▪ E-mail: chris.kirchberg@jmp.com
www.jmp.com