@garibay90 your data may also be resolution limited as well, as evidenced by the apparent "gaps" in between the bars in your bar chart, but even more clearly apparent in the "chattered" pattern of the points in your normal probability plot. this data doesn't look particularly well behaved for ANOVA, unless this data set is comprised of multople groups (samples)! In which case you need to run the normality assessment separately per group first. And then you can run the ANOVA. But even when you run the ANOVA, as mentioned, your analysis will be 'statistically biased' by your extremely large sample size. Hypothesis tests in general (including ANOVA) have much higher power to reject the null hypothesis as sample size increases. For ANOVA, you are testing the null hypothesis that the treatment offset for each group mean (to grand mean) is the same for all treatment groups. If you reject the null, then all you can assert is that at least one difference in the treatment offset between groups is observed. Note: another central assumption here is that the variance between the groups is the same. You can verify this assumption by using Fit Y by X> Unequal Variances, and looking at the p-values associated with the hypothesis tests which JMP automatically produces.
Principally though, ANOVA is a test compariing the means between groups (taking into account the overall variance between groups, which is assumed to be equal from group to group).