I don't know where you got the idea that for (1) you need a custom design with 52 runs that requires an augmentation. Similarly, I don't know where you got the idea that for (2) you must augment the DSD to estimate more than the main effects.
The DSD is a special case of the alias-optimal custom design for the RSM model. That is how the DSD was discovered.
You might not have to augment the DSD. If no more than 3 factors are active, then DSD for 9 factors will support the full quadratic model, which is often sufficiently accurate over the range of the response. Adding extra runs will increase both the power of the and the coverage of the design because you are effectively adding 'fake' factors. That change makes the 'sparsity of effects' principle more likely.
The custom design is still the best choice when one of the special design methods (e.g., DSD) is not appropriate or capable. For example, if you have hard to change factors, then you should not use the DSD. It also offers other opportunities for screening. You could specify the RSM model and then change the estimability of all the higher order terms from 'necessary' to 'if possible.' This definition will drastically reduce the minimum number of runs. Then add back 3-4 runs for every potential term that you expect to be active. For example, if I expect two non-linear effects and three interactions with your 7 continuous and 2 categorical factors, my custom design would be 10 + (2+3)*4 = 30 runs. I should not need to augment this design in the future. This Bayesian I-optimal design exhibits very high power if the effect size is at least twice the standard deviation of the response.
The only way to assess the accuracy of the model is to confirm its predictions. I recommend at least two predictions: settings for the optimal response and settings for a poor response. I trust in a model a lot more if it can predict the response anywhere.
Finally, be sure to always use a wide factor range for all the continuous factors to assure the maximum power and minimum estimation standard error. Do not change, limit, or decrease the factor range because you think you know where the optimum setting is in any experiment. Why add extra runs when a wide factor range gives you more empirical data and experience in a more economical design? Why localize the model?