cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Check out the JMP® Marketplace featured Capability Explorer add-in
Choose Language Hide Translation Bar

Beginner question - interpreting logistic regression results

Hello, I'm very new to stats analysis and have what's probably a very basic question.. 

I'm having trouble interpreting the results of a logistic regression analysis I've done with some simple data. 

I have a dataset of oak trees in two different forest types and am asking how size and forest type affect fate (undamaged vs. damaged) after a hurricane event. 

So, Y = fate, X = size (continuous variable) and forest type (two categories, young forest vs. mature forest). 

 

When I run the regression with both variables included, neither is significant. I also ran it with an interaction variable (size * forest type), and again, nothing is significant. 

This was somewhat surprising, because based on the data I expected both variables to be significant (or close). 

So then I ran a logistic regression with one variable at a time, just to see what happened. Size was not significant. With just forest type as a variable, though, it WAS significant, with trees that are damaged being more likely to be in mature forests. 

I'm having trouble wrapping my head around what this means. Size and forest type are correlated (size is significantly larger in mature forests) and there are ecological reasons that both of these would influence fate, strongly. I don't understand why only forest type is significant, unless there is variation between forest types (other than size) that is very important here - which could very well be the case - but then why isn't forest type still significant when added into the model with size?

Is it that size is influencing fate, just not enough to be statistically significant, and so when it's included it is explaining some of the variation, and this is kind of washing out the signal from forest type? 

I obviously don't understand enough about the internal workings of LR models... any advice is appreciated! 

1 REPLY 1

Re: Beginner question - interpreting logistic regression results

The correlation between Size and Forest Type means that the standard errors of their parameter estimates are inflated. This inflation reduces the power of the t-tests used to evaluate the estimates, making them less likely to be significant when they are together in the model than when they are modeled separately. Can you share the correlation between these two predictors?

 

You might also consider not separating the data by Genius. Your tests will be more powerful. Simply add Genius as another effect (term) in the model. You can add cross terms to model interaction effects if you think the effect of Size or Forest Type depends on the Genius.