取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 
The Discovery Summit 2025 Call for Content is open! Submit an abstract today to present at our premier analytics conference.
选择语言 隐藏翻译栏
查看原发布的话题

深入了解多重共线性

预测变量之间的高相关性会损害您的线性回归模型。此问题称为共线性或多重共线性。第一个视频概述了共线性、如何理解它、如何检测它、它与 JMP 报告中显示的 VIF(方差膨胀因子)有何关系以及如何解释 VIF。第二个视频展示了如何使用主成分分析来构建准确考虑共线性的模型。随附的 JMP 期刊为您提供了视频中使用的数据,因此您可以尝试这些技术。

Identifying and Understanding the Impact of Collinearity
Video Player is loading.
Current Time 0:00
Duration 22:28
Loaded: 0%
Stream Type LIVE
Remaining Time 22:28
 
1x
    • Chapters
    • descriptions off, selected
    • subtitles off, selected
    • en (Main), selected

    Principal Components Analysis PCA for Modeling Multivariate Relationships
    Video Player is loading.
    Current Time 0:00
    Duration 0:00
    Loaded: 0%
    Stream Type LIVE
    Remaining Time 0:00
     
    1x
      • Chapters
      • descriptions off, selected
      • subtitles off, selected

        这篇帖子最初是用 English (US) 书写的,已做计算机翻译处理。当您回复时,文字也会被翻译成 English (US)。

        评论
        hogi

        What determines the scale (range) on the X axis in a Leverage Plot?

        Di_Michelson

        @hogi, the scale of the axes on a leverage plot is set to the data scale after the plot is created. First, find the residuals for both models, then add the mean, then scale the axes to the data. For details, see Predictum's excellent video stored at Leverage Plots 2.mp4 on Vimeo. You might also be interested in the first video of the two-part series at Leverage Plots 1 on Vimeo

        hogi

        thanks a lot - very illustrative

        Attachments