r = 0.4;
n = 15;
z = 0.5 * Log((1+r)/(1-r));
up_z = z + Normal Quantile(0.975)*Sqrt(1/(n-3));
low_z = z - Normal Quantile(0.975)*Sqrt(1/(n-3));
Show((Exp(2*low_z)-1)/(Exp(2*low_z)+1));
Show((Exp(2*up_z)-1)/(Exp(2*up_z)+1));
p_z = 2*Normal Distribution(-Abs(z*Sqrt(n-3)));
Show(p_z);
t = r * Sqrt((n-2)/(1-r^2));
p_t = 2 * T Distribution(-Abs(t), n - 2);
Show(p_t);