cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Try the Materials Informatics Toolkit, which is designed to easily handle SMILES data. This and other helpful add-ins are available in the JMP® Marketplace
KG
KG
Level I

Script- Extracting spec limits from distribution process capability

I am attempting to write a script (JMP 16.0) to select columns from a dataset, create distributions, do a continuous fit “ALL” and generate process capability on the best fit (see below).

What I am having issues with is figuring out how to generate a table with characteristics of the distributions, specifically the generated spec limits.  Also I am having difficulty combining all the distributions to a single window. Any pointers would greatly be appreciated, I have tried looking into scriptable object documentation without any luck.

 

file = Current Data Table ();
TableList = List ();
For (i = 1, i <= NTable(), i++,
     TableList [i] = Data Table (i) << Get Name
);
ColSelect = Column Dialog (
     Column Use = ColList ("Add", Max Col (N Col()))
);
For (i = 1, i <= N Items(ColSelect["ColumnUse"]), i++,
    colName = ColSelect ["ColumnUse"] [i] << Get Name;
     obj = file << Distribution(
         Continuous Distribution(Column(Eval(colName)), Fit ALL)
     );
     specLimits = obj << (Fit Handle["best"] << Process Capability( Set Sigma Multiplier for Quantile Spec Limits( 3 ), show limits ));
      );
1 REPLY 1

Re: Script- Extracting spec limits from distribution process capability

How about the following script? Hope it helps.

file = Open("$SAMPLE_DATA/Cities.jmp");
ColSelect = Column Dialog( Column Use = ColList( "Add", Max Col( N Col() ) ) );
If( ColSelect["Button"] != 1,
	Throw();
);

spec limit aa = Associative Array();

nw = New Window( "Combined Results",
	H List Box(
		For( i = 1, i <= N Items( ColSelect["ColumnUse"] ), i++,
			colName = ColSelect["ColumnUse"][i] << Get Name;
			obj = file << Distribution(
				Continuous Distribution( Column( Eval( colName ) ), Fit ALL )
			);

			rpt = obj << report;
			best dist = rpt[Outline Box( "Compare Distributions" )][Table Box( 1 )][
			String Col Box( 1 )] << get( 1 );

			Eval(
				Eval Expr(
					obj << (Fit Handle[Expr( best dist )] <<
					Process Capability( Set Sigma Multiplier for Quantile Spec Limits( 3 ) ))
				)
			);

			spec limits = rpt[Outline Box( "Process Capability" )][
			Outline Box( "Process Summary" )][Table Box( 1 )][Number Col Box( 1 )] << get;
			spec limit aa[colName] = Eval List( {spec limits, best dist} );
		)
	)
);

//Save to New Data Table
result dt = New Table( "Results" );
colnames = spec limit aa << get keys;

result dt << addmultiplecolumns( "key", N Items( colnames ), Numeric );

For( i = 1, i <= N Col( result dt ), i++,
	Column( result dt, i ) << set name( colnames[i] )
);

result dt << addrows( 5 );

For( j = 1, j <= N Col( result dt ), j++,
	For Each Row(
		i = Row();
		Try( result dt[i, colnames[j]] = spec limit aa[colnames[j]][1][i] );
	)
);