cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
The Discovery Summit 2025 Call for Content is open! Submit an abstract today to present at our premier analytics conference.
See how to use to use Text Explorer to glean valuable information from text data at April 25 webinar.
Choose Language Hide Translation Bar
View Original Published Thread

Normal quantiles interpretation

75Innovation
Level I

Hello, 

 

Based on my knowledge the quantiles are from 0.0 to 1.0 for a continuous variable. JMP shows that nicely on the distribution platform. But when I save the Normal Quantiles to a table, I also see negative quantile values and more than 1.0 values. Which does not make sense? How do I interpret these values and convert them to quantiles in the range from 0.0, 0.25, 0.50, 0.75 and 1.0. 

 

Thanks 

3 REPLIES 3


Re: Normal quantiles interpretation

The values of 0 to 1 are the probabilities. The quantiles are the values of your variable that correspond to a given portion or probability of the distribution. So the 10% means that Pr( X < quantile ) = 0.1 in such a case.


Re: Normal quantiles interpretation

I interpreted your question differently than Mark Bailey did. Just in case your question is the way I took it:

 

When you are in the Distribution report and choose Save > Normal Quantiles from the red triangle, the column that is added is the value for a normal quantile for that row.

 

For example, suppose you had a small dataset with values 2, 4, 6, and 8. The value of 2 would be a quantile of .20 (20% of the distribution is less than this value). What point is that on a normal curve? That would be -0.84. 20% of the normal distribution is less than -0.84. These are the values that are saved in the column. Therefore, your values in this column will typically be between -3 and +3, but it is possible to see values outside of that range.

 

Dan Obermiller
75Innovation
Level I


Re: Normal quantiles interpretation

Mark, appreciate the reply. 

Dan. My question was more in line with your interpretation. Thank you.