cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
The Discovery Summit 2025 Call for Content is open! Submit an abstract today to present at our premier analytics conference.
Choose Language Hide Translation Bar
View Original Published Thread

How can I fit a second order exponential decay to my data?

pbouzi0
Level I

How can I fit a second order exponential decay to my data?

2 REPLIES 2
David_Burnham
Super User (Alumni)


Re: How can I fit a second order exponential decay to my data?

The short answer is you use the Nonlinear platform: Analyze>Modeling>Nonlinear

Nonlinear Regression with Custom Models

Nonlinear Regression with Built-In Models

-Dave
DaveLee
Level IV


Re: How can I fit a second order exponential decay to my data?

Here is what I use to fit a Stretched Exponential, make a plot to  look for anomolies and fit using the Non-Linear platform.

Fade=Current Data Table():

Fade << New Column( "Stretched Exponential",

    Numeric,

    Continuous,

    Formula( Parameter( {a = 1, b = -0.01, c = 0.2}, a * Exp( b * :Hours ^ c ) ) )

);

biv=Fade << Bivariate(

    Y( :Std Output1 ),

    X( :Hours ),

    SendToReport(

        Dispatch(

            {},

            "2",

            ScaleBox,

            {Min( 0.65 ), Max( 1.05 ), Inc( 0.05 ), Minor Ticks( 1 ),

            Label Row Nesting( 1 ), Label Row( Show Major Grid( 1 ) )}

        ),

        Dispatch(

            {},

            "Bivar Plot",

            FrameBox,

            {Frame Size( 375, 279 ), Row Legend(

                Exp No,

                Color( 1 ),

                Color Theme( "JMP Default" ),

                Marker( 0 ),

                Marker Theme( "" ),

                Continuous Scale( 0 ),

                Reverse Scale( 0 ),

                Excluded Rows( 0 )

            )}

        )

    )

);

biv<<Journal;

f=Fade<<Nonlinear(

    Y( :Name("Std Output1") ),

    X( :Name( "Stretched Exponential" ) ),

    Iteration Limit( 100000 ),

    Unthreaded( 1 ),

    Newton,

    Finish,

    By( :Device ID ),

    Custom Inverse Prediction( Response( 0.7 ),

    Term Value( Hours( . ) ) )

);

f_rep = f <<report;

rep=Report( f[1] )[Outline Box (6)][Table Box(1)] << Make Combined Data Table;

rep<<Current Data Table<<Set Name("Combined T70 Predictions");

rep=Current Data Table();

rep<<New Column("Exp No", character, formula(Substr(  :Device ID , 1, 10 )));

Hope this helps. Please let me know if you need anything further.

Dave