cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Have your say in shaping JMP's future by participating in the new JMP Wish List Prioritization Survey
Choose Language Hide Translation Bar
MetaLizard62080
Level III

Do 3rd order effects help define curvature?

If you have are making a design with a factor you are certain will have a quadratic relationship against a response but you have a wide range, can it be helpful to define a 3rd order model effect for that factor to better identify and model curvature.

 

I work in purification and we often deal with a recovery vs. purity balance. This relationship is usually quadratic around the optimal, where at a low condition, we see 100% recovery and 0% purity, at an optimal condition, we may see a 90% recovery and 90% purity, and at a high condition, we may see 90% purity, and 0% recovery (Sometimes 0% recovery also leads to inaccurate purity data).

 

I understand a 2nd order effect should be able to effectively model a quadratic relationship, however if I am uncertain how far to extend a design space, I worry that I could effectively overshoot by extending too much (Where the centerpoint is far beyond the optimal so that recovery is ~0% and so is the high condition), or undershoot by constricting the space too much (where the centerpoint is far before the optimal and leads to 100% recovery and 0% enrichment). I've had a few situations now where DoEs performing very well when characterizing a design space we are already aware of but tend to be inaccurate when I try to extend them to new design spaces where we are uncertain of the appropriate ranges. In the scheme of things, the expected total model curve would be a bell shape (With tails on each end) which I guess would be representative of a 4th order polynomial??? I am not really interested in characterizing that entire space as I just need a model that effectively predicts the range around the optimal, however with my current issue of not knowing where the optimal exists I am trying to determine a solution for future studies.

 

By increasing the order effect of this one factor, it creates more levels within the space so I assume it gives it a better opportunity to land on some intermediate conditions which flanks the optimal.

 

Is this thought process correct? I tested this within a DoE and it did not add any additional experiments but I know typically if that's the case, you are giving something else up. 

0 REPLIES 0