cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Choose Language Hide Translation Bar
Industrial Quality Improvement – An Historic Example (2022-US-45MP-1094)

Ronald Andrews, Sole Proprietor, Andrews Practical Stats

 

A long time ago in a galaxy far far away…

 

Actually, it was 1986 in Rochester, NY. Eastman Kodak had 60,000 employees in the community. Sales of photographic film (that stuff your grandparents used to take pictures before digital cameras) were expanding. Waste was too high and the product was too variable. After trying everything else, the corporate quality finally obtained a green light for an SPC program. Within four years, the variance for several key measures dropped by a factor of 100. Products that had averaged six formula changes per event went for six months without a change.

 

Photographic film manufacturing is no longer important for most of us, but the quality improvement processes used are as relevant today as ever. They are also enabled by JMP. In 1985 we used pencil and paper and mainframe SAS. Data collection sheets, cause and effect diagrams, regression analysis and SPC charts are all facilitated today with JMP.

 

 

Well, thanks  for  being  here  today.

My  name  is  Ron  Andrews.

I've  got  contact  information  listed  here,

so  if  there  are any  questions after  the  fact,

you  can  reach  me  at  these  addresses.

Going to be  talking  about quality  improvement,

a  very, very  general  term,

but  this  is  specific  with  specific  results from  a  project  I  worked  on  many  years  ago.

This  goes  a  long  time  ago in  a  galaxy  far,  far  away…

Or  maybe  it  was  1986 in  Rochester,  New  York,

at  Eastman  Kodak  dealing with  photographic  emulsions.

A  little  history.

Kodak  had  a  corporate  quality  council that  had  known  for  years

that  we  really  needed  a  robust statistical  process  control  program.

Management  wasn't  buying  it.

They  didn't  want  to  pay  for  it.

They  promoted  some  less  expensive  options like  slogan  contests  and  pep  rallies,

and a  lot  of  you  know  about how  effective  they  are.

By  1985,  sales  were  hitting  records, but  so  was  waste.

So  the  council  finally  got approval  for  an  SPC  program.

Though the  improvements I'm  going  to  talk  about

are  a  small  part  of  the  total  effort.

Within  the  emulsion  manufacturing at  Eastman  Kodak  that  I  was  working  with,

I  was  one  of  several  engineers  and  a number  of  operators  working  on  this,

so  I  contributed  to the  results  I'm  showing,

but  I  was  by  no  means the  leader  for  the  whole  effort.

So  why  light-sensitive silver  halide  emulsions?

It's  kind  of  obsolete  technology, isn't  it?

Well,  yeah,  probably.

But  there's  still  three  companies that  do  this  on  a  regular  basis,

and  there  are  still a  few  million  people  who  shoot  film.

Most  of  all,  this  is  familiar  to  me, and  I  have  some  results  I  can  share.

I'll  talk  about  the  basic  process and  what  do  the  chemists  tell  us?

We'll  talk  about  several  different quality  improvement  tools

like  data  sheets, and  cause  and  effect  diagrams,

trend  charts, and  statistical  process  control  charts.

Then  got  to  deal  with the  people  side  of  SPC.

It's  probably  more  important than  the  statistics.

And  then  I'll  deal  with  a  question  that I had  to  deal  with  directly  way  back  then:

How  do  you  do  SPC  when  you only  make  six  batches  a  year?

Before  I  really  get  started,

I  need  to  acknowledge  the  leadership of  two  people.

In  our  group  of  engineers, there  was  no  appointed  leader,

but  Carl  Eldridge was  clearly  the  point  man.

He  had  this  nice,  easy- going  manner and  could  talk  production  supervisors  into

making  changes that  they  really  didn't  want  to.

But   he'd come in, "W e're  just  going to  try  this  out  and  see  if  it  works.

"And  if  it  works,  we'll  probably  keep doing  it  and  it'll  reduce  your  waste."

He  would  talk  them  into  it.

Kevin  Hurley  was  also  a  key  person.

He  was  2nd-floor Emulsion M aking  group  leader.

He  was  a  very  capable  leader

and  had  the  trust  of  all the  people  who  worked  in  his  group.

They  decided  they  really  wanted to  have  control  of  the  process.

Engineers  could  decide  the  specs, but  they  wanted  to  control  the  process.

Turned  out  to  be  a  very  good  decision.

Overview  of photographic  film  manufacturing,

and  this  is  the  50,000 -foot  level.

We  weigh  out  the  ingredients.

We  precipitate the  silver  halide emulsions.

We  wash  them.

We  take  samples  of  each  batch

and  sensitize  them  at  three  different temperatures,

choose  the  best  temperature,

and  then  sensitize the  balance  of  each  batch.

Then  we  assemble  all  the ingredients  necessary for a coating event,

and  test  each  melt.

A  melt  is  a  kettle ful. You  got   to melt the  gel.

That's  where  that  term  comes  from.

Then  make  corrections for  the  layers  out  of  spec,

and  there  will  be  some.

In  those  days,  it  was  a  given.

Then  we  coat  a  short  pilot, and  then  we  adjust  the  formulas,

and  then  we  coat a  short  re- pilot about  a  week  later

and  adjust  the  formulas  again.

And  then  if  things  are  looking  good,

we   coat the  remaining  emulsions in one  or  two  large  runs

and  test  the  results.

And if  necessary,  take  the   coated rolls back  to  the  coating  ally

and  apply  filter  dyes to  correct  the  color  balance.

If  it's  not  already  obvious,

everything  in  red isn't  an  adjustment  step.

These  are  things  we  did  because  we  didn't always  get  it  right  the  first  time.

It's  basic  product  control.

Kodak  has  some  of  the  most  extensive and  elaborate  product  control  methods

I've  ever  seen  or  heard  about.

It's  not  necessarily  a  market  distinction.

I'm  focusing  on  emulsions  because the  products  that  I  was  dealing  with,

basically  Kodachrome and  Ektachrome  slides,

the  light -sensitive  silver  halide emulsions  were  by  far

the  biggest  contributors  to  variability.

In  the  emulsion  manufacturing  process,

we  were  still  using the  old  school  equipment.

There  were  some computer- controlled  systems,

but  we  were  dealing  with open  kettles  and  gravity  flow

from  jars  into  the  main  kettle.

The  main  kettle  started  with  water, phthalated  gel,  sodium  bromide,

and  potassium  iodide.

We  had  three  jars:

one  prepped  with  silver  nitrate,

another  with  ammonium  hydroxide, another  with  sulfuric  acid.

We  start  by  running  the  silver  nitrate through  disc  orifices.

There  would  be  a  set  of  discs  with calibrated  holes  drilled  in  them.

That  was  basically  our  flow  control.

Now,  gravity  flow  is  extremely  consistent if  you  keep  the  geometry  consistent.

Big  "if"  there.

Once  we  had  all  of the silver  nitrate  in  there,

we  formed  a  number of  silver   halide crystals.

We  pour  in  the  ammonium  hydroxide.

Ammonia  is  a  silver  solvent.

It  dissolves  the  little  crystals, and  they  plate  out  on  the  big  crystals,

so that's  our  growth  step.

Then  we  go  into  the  washing  step.

We  need  to  remove  the  salts,

the  nitrate  and  the  sodium  and  the  iodide…

Not the sodium, the  potassium.  Excuse  me.

We  add  acid,  which,  first  of  all, quenches  the  ammonia  reactions,

and  second  of  all, it gets  the  pH  low  enough

so  that  the  phthalated  gel  coagulates

and  drops  to  the  bottom of  the  kettle  with  the  silver.

At  this  point, we  siphon  the  supernatant  liquid  off

and  complete  the  washing  step.

Some  effects  we  knew  about.

We  knew  grain size  was  proportional to  the  silver  run  time.

That's  the  total  time  it  takes for  the  silver  to  run  into  the  kettle.

If  the  silver  is  running  longer,

that  means  it  was a  lower  flow  rate  initially,

where  the  individual  grains  are  formed.

If  you  have  fewer  grains and  add  the  same  amount  of  silver,

you're  going  to  grow  them  larger.

Temperature  is  also proportional  to  run  time,

as  is  the  amount  of  ammonia.

That's  not  directly  proportional.

It's  very  nonlinear.

It's  a  very  steep  slope  to  start  with,  and  then  it  levels  out.

In  addition  to  grain size, we  had  to  deal  with  fog.

Fog  is  what  you  get  when a  silver   halide  crystal  develops

without  having  been  exposed  to  light.

We  don't  form  images  that  way, so  we  need  to  minimize  this.

That's  proportional  to  the free  ionic  silver  concentration

and  to  some  extent,  the  temperature.

Now,  for  any  chemists  in  the  group,

the  solubility  coefficient for  silver  bromide

is  something  like  5  times   10⁻¹³ .

The  free  ionic  silver  concentration is  extremely  low,

but  it  still  makes  a  difference.

Variation  in  this  level  makes  difference in  the  photographic  properties.

We  prepared c ause  and  effect  diagrams on  paper,  hand- drawn.

I  really  wish  we  had a  tool  like  the  one  in  JMP,

where  you  list  the  key p arent  parameters.

In  this  case,  we're  looking  at  grain size,

and  then we  have  materials,  methods,  etc., t hat  might  affect  that.

And  then  you  move  these  child  parameters over  to  the  parent  side

and  list  the  things that  might  affect  that.

As  far  as  I  know,  there's  no  limit

to  how  many  branches you  have  on  your  diagram.

Once  you  have  this  table  made  up,

you  identify  the  child  column and  the  parent  column

and  hit  the  OK  button, and  out  pops  the  diagram.

I  don't  know  of  another  way that's  as  easy,

and  I'm  pretty  sure  there's  nothing  else as  easy  when  you  have  to  modify  something.

Instead  of  moving  boxes  around on  a  graphic  chart,

you  just  edit  one  or  two  of  the  lines,

or  maybe  delete  one,  add  one,  and  hit  the  button  again.

That's  all  there  is  to  it.

Now,  all  of  these items  listed  on  this  chart

can  potentially  affect  the  grain size.

But  when  it  came  down  to  it,

the  run time  and  the  variation from  one  disc  orifice  to  another,

and  the  variation  from  kettle  to  kettle

were  the  most  important  things.

We  also  did  this  for  the  vAg.

vAg is a  measurement  which  is as  close  as  we  can  get

to  measuring  the  actual free  ionic  silver  concentration.

We  have  basically  the  same  things listed  here,  but  in  this  case,

it's  the  percent phthalation which  affects  the  washing,

and  the  siphon  level  which is  directly  related  to  the  washing.

These  are  the  two  critical things  in  controlling  the  vAg.

Going  through  some  of  the  conventional quality  improvement  tools,

we  had  data  sheets.

We  had  14x 17  ledger  books, about  six  inches  thick.

They  had  years  worth  of  data of  several  hundred  emulsion kinds ,

and  they  were  in  a  lab that  was  hard  to  get  to.

You  had  to  go  through  a  dark hallway  to  get  there.

When  we  learned   where it  was and  how  to  get  there,

we  started  borrowing  the  pages

and  transcribed  the  data  on  the  emulsion kinds  of  interest  into  SAS  datasets.

It's  a  lot  easier  to  use things  in  digital  form.

If  we'd  had  JMP,  the  data  tables would  have  looked  something  like  this.

Each  of  the  emulsion  kinds   had a  four- digit  number  identifying  it.

We  had  sequential  batch  numbers. We  recorded  the  date.

We  recorded  the  kettle  used,

and  then  we  recorded a  number  of  parameters.

This  is  the  run time  in  seconds.

pHs  after  several  different  process  steps, and  the   vAg at  the  end.

This  is  an  early  trend  chart. We  hadn't  put  control  limits  on  it  yet.

This  is  the  run time.

Significant  variability  here.

We  could' ve  done  extensive regression  analyses

to  try  to  determine what's  really  influencing  this.

The  first  step  was  easy.

We  overlaid  the  kettle  designations.

It's  pretty  obvious.

You  don't  need  any  special  analysis to  know  these  kettles  are  different.

These  kettles  have been  there  for  a  long  time,

and  it  wasn't  really  possible to  completely  rework  them,

so  we  restricted  each  emulsion  kind to  a  particular  kettle.

Kind 6001  was  restricted  to  kettle  602.

I'll  get  into  more  details on  the  control  charts  later,

but  just  to  show  the  data.

This  early  unrestricted  phase.

We were not  using control  limits  at  the  time,

but  this  was  our  initial  variability.

And  then  we  restricted  the  kettle,

and  we  got  a  large  reduction in  the  variability.

And  then  one  of the  other  engineers  got  the  idea

that  maybe  all  those  disc orifices weren't  created  equal.

He  set  up  some  experiments  and  ran  some water  batches  and  timed  them  all,

and  found  there  were consistent  differences

with  different  sets  of  disc  orifices.

We  restricted  a  given  set  of   disc orifices to  a  given  emulsion  kind.

We  had  a  file  drawer  with  a  folder for  each  emulsion  kind,

and  there  were  envelopes  in  there that  had  the  disc  orifices  in  there.

We  had  to  make  more  of  them, but  it's  just  a  little  disc  of  metal

with  a  hole  drilled  in  it, so  it  was  not  expensive.

That  also  gave  us  another big  drop  in  variability.

A  number  of  things  we learned  in  next  few  months.

I  mentioned  the  phthalated  gel that  coagulates  when  the  pH  gets  low.

We  needed  the  percent phthalation  to  be  correct.

The  gel  plant  couldn't  hit  it exactly  with  a  single  batch.

They  had  to  blend  batches  together to  hit  the  4.5%,

plus  or minus  the  of tenth of  a  percent aim  that  we  were  shooting  for.

That  worked  if  the  batches  were  not  too far  apart  in  their  percent  phthalation,

but  if  you  had  a  batch  that  was very  high  in  its  percent  phthalation

and  a  batch  that  was  rather  low in  its  percent phthalation,

when  you  mix  them  together and  go  through  the  wash  process,

that  high-phthalation  gel  is  all  going  to drop  out  to  the  bottom  of  the  kettle,

but  only  part  of  the  low -phthalation  gel is  going  to  fall  out.

So  we  had  variable  amounts  of  gel

being  transferred  to the  next  step  in  the  process,

depending  on  the  decisions they  made  in mixing  gel  batches.

We  came  up  with  a  rule  that  mixed batches  had  to  be  within  1%  of  each  other.

It's  not  perfect, but  it  was  a  big  improvement.

We  mentioned  run time  and  our  restriction on kettles and  disc orifices.

We  also  improved  our measuring  of  the  run time.

We  used  to  rely  on  operators  watching the  clock  as  they  opened  the  valve,

and  watching  the  clock  as  the  last little  bit  of  silver  nitrate  ran  out.

We  put  a  switch  on  the  valve so that  the  clock  started  then,

and  we  had  a  sensor  in  the  line

so  that  when  the  last  little  bit  ran  out, it  stopped  the  clock.

Better  data  always  helps.

We  learned,  quite  by  accident,

that  if  you  have  a  delay  when  you're setting  up in  the  process

and  you  cook  the  gel  a  little  bit  longer than  usual,  it  loses  buffering  capacity.

With  less  buffering,  when  you  add  acid to  coagulate  the  gel,

that  pH  is  going  to  drop  farther than  what  you  really  wanted.

We  discovered  this  during  the trend chart phase  in  our  emulsions.

One  of  the  operators looked  at  the  data  and  said,

"This  lot 's  different.  All  the  pHs are  different o n  this  particular  batch."

Looked  at  it  and  agreed,

"Yeah,  that's  different.  There's something  really  unique  about  this  batch."

And  conversations with  the  operator,

" Do  you  know  of  anything  that  happened different  on  this  particular  batch?"

He  volunteered, "W ell,  I  had  a  problem with  the  ammonia  jar,

"and  I  had  to  dump  it and  start  over  again,

"so  there was  a  delay  in  getting  started."

Another  operator  chimed  in,

"I  had  a  batch  that  looked  like that  in  terms  of  the  pHs  a  while  back.

"Let's  go  look  at  that."

And  we  dug  out  the  data  for  that  one,

and  the  timestamps  said,  yeah, there  was  a  delay  in  starting  that  one.

The  pHs all were  more  variable.

They  were  farther  off.

The  higher pHs were higher and the  low  pHs  were  lower.

So  we  did  more  experiments on  the  bench  scale

and  found, yeah, there  was  a  real  effect  there.

And  the  chemist  volunteered  that,  yeah, they  knew  it  could  happen,

but  they  had  no  idea that it  happened  this  fast.

So  we  put  a  limit  on  the  gel  prep,  a  time  limit.

If  you  haven't  started  using  it within  a  given  time  frame,

you  dump  it  and  start  over.

It  really  does  make  sense  to  dump

a  couple   hundred dollars worth of  gel  and  salt

rather  than  adding  tens  of  thousands of  dollars  worth  of  silver  to  that  kettle

and  running  a  risk  of  dumping  that.

We  also  learned  in  the  washing  process,

it  was  better  to  be consistent  and  imperfect

than  strive  for  perfection and  getting  greater  variability.

That  is,  our  operators  had  long  been  told in  that  washing  process,

the  good  stuff' s  in the  bottom  of  the  kettle.

That  silver  and  gel  down  there at  the  bottom,  that's  the  good  stuff.

Don't  you  dare  suck  any  of  that  out in  the  siphon  wand,

but  get  all  of  the  supernatant  liquid you  possibly  can  out.

The  only  problem  was  the  coagulation didn't  always  have  the  same  density.

Sometimes  it was  nice  and  compact in  the  bottom  of  the  kettle,

and  sometimes  it  was  a  little  fluffy and  took  up  more  space,

and  you  couldn't  siphon  down  as  far.

Rather  than  siphoning down  as  far  as  possible,

we  got  more  consistent  results  when  we specified  exactly  how  far  to  siphon.

For  kind  6001,

we  went  down  to  number  23 on  the  siphon  wand.

We  put  markers.

Basically,  we  put  a  measuring  stick along  the  siphon  wand

and  had  different designations  for  different  kinds.

If  we  really  needed  to  get  that free  ionic  silver  concentration  lower,

we  added  on  an  extra  washing  step.

We  re dispersed  the  gel  by  adjusting the  pH  and  then  recoagulated  it.

Looking  at  the  vAg  chart,

this  was  the  initial  area,

and  this  is  when  we started  restricting  the  kettle.

Not  much  change.

It  looks  like  there  might  be slight  reduction,

but  I  wouldn't  brag  about  that.

In  this  last  phase…

Well,  okay,  we  restricted  DOs  here,

but  the  real  change is when  we   add a  standard  siphon  level

rather  than  siphoning  as  far  as  we  can.

That  made  a  real  difference.

We  had  reduced  variability, so  we  continued  that.

Consistency  is  worth  more  than the  ultimate  performance,

especially  if  you  can't  repeat  that ultimate  performance  every  time.

Early  successes  like  these were  worth  their  weight  in  gold.

The  enthusiasm  and  increase  in  morale  that that  brought  about

was  possibly  worth  more  than  gold.

It  was  priceless.

Few  things  get  people  more  excited  than having  them  have  their  own  results

result  in  dramatic  improvements in  the  product.

How  do  you  sustain  improvements, and  how  do  you  keep  learning?

Well,  I've  already  showed  you some  control  charts,

but  SPC  charts  are  really  the  way  to  go.

As  I  indicated, we  decided  to  make  them  operator -centered,

as in  put  the  operators in  control  of  the  process.

Now,  the  people  side  of  SPC

is  probably  more  important than th e  statistics.

Some  people  take to  SPC like  ducks  to  water,

and  some  people, it's  more  like  cats  to  water.

Now,  I  know  there  are  some  cats who  actually  can  swim,

but  most  cats  are  going  to  react more  like  this  one  does.

They're  going  to  get  out  of  that  water as  fast  as  they  possibly  can.

Now,  that  2nd- floor  Making  group, they  were  in  the  ducks  to  water  category.

The  6th- floor  Making  group,

which  is  what  I  dealt  with  more often  with  the   Kodachrome products,

I  won't  call  them  cats  to  water, but  they  were  skeptical.

I  had  to  prove  it  to  them that  this  was  going  to  work

before  they  really  bought  into  it.

It  took  longer,  but  we  did  get  there.

I  hope  most  of  you  are  familiar  with the  work  of  W.  Edwards  Deming.

I  was  fortunate  to  attend  one  of  his four -day  seminars back in 1992.

Happened  to  be  the  last  year  of  his  life. He  was  92  at  the  time.

He  was  one  of  the  preeminent

quality  control  and  quality  improvement experts  in  the  world  at  the  time.

The  Deming  Award  in  Japan is  named  for  him.

They  still  give  that  award  every  year

to  the  company  showing  a considerable  improvement  in  quality.

If  you  are  not  familiar  with  him, first  of  all,

look  up  Deming's  14  points  and  read  them.

Second  of  all,  get  his  book.

Well, he  wrote  several  books.

I  think   Out  of  the  Fear   was  the  last  one.

Read  that  as  well.

But  point  number   8 of  his  14  points  says, "Eliminate  fear."

Allow  people  to  perform  at  their  best

by  ensuring  that  they  are  not  afraid to  express  ideas  or  concerns.

Think  about  that  operator  that  volunteered that  he  had  made  a  mistake

and  that  caused  a  problem with  that  particular  batch.

He  volunteered  that  freely.

I've  been  other  places  where  operators

are  often  punished  for  making  mistakes, at  least  reprimanded.

When  that  happens, they  don't  admit  mistakes.

They  cover  them  up, and  you  don't  learn  things.

You  got  to  work  against  that.

Everybody  has  to  be  able  to freely  express  what  happened,

what   good happened, what  bad  things  happened,

and  to  communicate  freely.

It  opens  up  a  whole  world  of possible  improvements

when  you  have a  free  exchange   of  information  like  that.

Getting  down  to  the  SPC  charts.

As  I  mentioned,  we  started  with  the  charts in  control  of  the  operators.

To  do  this,  you  got  to  keep  it  simple.

Not  that  operators  can't  learn to deal  with  complicated  charts  eventually,

but it's  going  to  take  longer

and  the  training  process  will be  longer  for  new  employees.

It's  worth  something t o  keep  it  simple.

We  used  a  chart  of  individuals.

We  omitted  the moving  range  part  of  the  chart.

I  know  this  may  be  heresy  for  some quality  control  purists,

but  we  looked  at  that  and  said it  doubles  the  complexity  of  the  chart.

We  know  it  adds additional  useful  information,

but  it  doesn't  double the  amount  of  useful  information,

so  we're  going  to  forgo  that  for  now.

We  also  use  only  two  run  rules.

A  point  was  out  of  control  if  one  point was  beyond  three  sigma,

or  two  out  of  three  were  beyond  two  sigma.

That was the  only  criteria.

Obviously,  there  are  six  more traditional  rules,

and  other  sets have  even  more  run  rules.

We  kept  it  simple, and  this  kept  us  busy.

We  still  had  a  number  of out- of- control  events  to  investigate,

so  it  kept  us  hopping.

It  was  about  all  we  could  handle.

It's  also  necessary  to  think  about what  limits  you're  going  to  set.

think  that's  actually  on  the  next  slide, so  I'll  get to that in a  second.

I'm  getting  ahead  of  myself.

We  had  daily  meetings to  assess  the  charts.

Operators  would  present  them.

They  would  indicate  points that  were  out  of  control,

and  engineers  were  there to  comment  about  what  we  know  about  it

and  help  investigations.

Most  importantly,  we  had  celebrations for  out- of -control  situations.

Literally.

When  an  operator  indicated  that  something was  out  of  control,  we'd  say  thank  you.

Thank  you  for  sharing  that  with  us.

Let's  see  what  we  can  do working  together  to  find  out  what  happened

and  maybe  fix  something.

Here's  that  slide  that  I  was getting  ahead  of  myself  with.

How  do  you  set  the  limits?

Purists  insist  that  the  control  limits must  be  based  on  short-term  variability.

That's  the  definition  of  control.

The  process  is  in  control when

short -term  variability matches  long- term  variability.

Pragmatists  know  that  even  if  you set  the  limits  a  little  bit  wider,

say  maybe  take  the  first  30  points,

take  the  standard  deviations, set  the  limits  of  three  sigma,

even  at  that  point,  you're  still  going  to have  out -of -control  points  to  deal  with.

If  alarms  happen  too  often, they're  going  to  be  ignored.

Set  the  limits  that  are a  challenge  and  achievable.

You  got  to  walk  that  tightrope.

Now,  I  would  suggest  deciding how  you're  going  to  set  the  limits

and  then  stick  with  that  method  until you decide  you  have  to  make  a  change.

Don't  just  do  it  totally  on  a  whim,

but  set  a  definition  that's comfortable for  your  situation,  and  run  with  it.

Most  of  all,  you  got  to  keep striving  for  continuous  improvement.

Looking  at  the  results.

Now,  so  far,  I've  just  been  talking  about the  emulsion  making  operation.

The  next  operation,  the  sensitizing,

is  where  there's  a  considerable  boost of  the  photographic  properties.

We  test  the  photographic  properties after  the  sensitizing  step.

The  lot -to -lot  standard  deviation for  the  photographic  speed

dropped  from  about   10 units,

that's  about  a  third of a  stop  for  those familiar  with  that  photographic  term,

to  about   1 unit.

Actually, it  was  lower  than  that

because  the  standard  deviation of  the  test  process  was  about  one  unit.

We had  more  than  a  ten fold  reduction in  the  standard  deviation.

If  you  want  a  more  impressive  statistic,

we  had  more  than   a hundredfold  reduction in  the  variance.

The  formula  adjustments

from  one  coating  event to  the  next  dropped  drastically.

We  had  some  products that  went  from  six  changes  per  event

to  zero  changes  over  a span  of  six  months.

When  we  started  this,  we  had  no  idea  that we  could  possibly  get  anything  that  good.

Now,   I  want  to  get  back to  that  question  I  posed  earlier.

How  do  you  implement  SPC  when  you only  produce  six  batches  per  year?

One  of  my  particular  products was  Kodachrome 25.

That  was  a  old  and  venerable  product that  had  once  been  quite  popular

and  had  been assigned  to  the  larger  kettles.

But  a  lot  of  the  market had  switched  to  higher- speed  products

like  the   Kodachrome 64

or  the  even  higher -speed Ektachrome  slide  films.

It  was  a  rather  small  runner by  the  time  I  was  responsible  for  it.

A  couple  of   emulsion  kinds, we only produced  six  batches  a  year .

n equals 6 is  not  very  good  for  statistics.

My  answer  to  the  question is  what  I  call  creative  swiping

Simply  copy  the  procedures that  were  found  to  be  useful

on  the  large -running  constituents

and  copy  the  same  ones for  the  small  runners.

Now,  they're  the  same  class  of  emulsions.

Same  basic  technology,

gravity  flow  containers,  ammonia  digest,

phthalated g el,  coagulation  for  washing.

We're  using  the  same  basic  process.

You  find  out  what  works in  the  large  runners,

apply  it  to  the  small  runners,

and  we  got  similar  improvements.

By  the  way, these  charts  with  the  blue  background,

these  are  actually  scans  of 35 millimeter  slides

that  I  used  in   an  internal  presentation at  Kodak  back  in  1988.

They  were  computer -generated by  a  firm  called  Genigraphics.

I  think  they  charged  $6  a  slide.

A  lot  of  things  have  changed  since  then.

This  is  looking  at  the  vAg   in finishing.

Previous  data  I'd  shown  was in  the  making  operation.

Finishing  is  the  sensitizing  step.

This  is  the  last  step  before  you put  the  emulsions  into  a  coating event.

We  got  a  significant reduction  in  the  variability.

Now,  contrast  balance.

I  got  to  explain  this.

One  of  the  most  important  things of  a  color  film

is you  have  three  different  color  records: red,  green,  and  blue.

You  got  to  keep  the  contrast  of  those three  different  records  the  same.

They  got  to  match  each  other.

If  they're  all  a  little  bit  off, it's  not  too  bad,

but  they  got  to  match  each  other,

so  the  contrast  balance is  the  most  important  parameter.

If  it's  off,  you  could  end  up  with green  highlights  and  pink  shadows,

There's no  way  people  can  correct  that in  these  pre -Photoshop  days.

In 1987, we  had  a  pretty  wide  spread  of  results

in  this  two- dimensional  plot.

The  hexagon h ere  are  the  spec  limits.

This  95%  confidence  ellipse  indicates there  will  be  more  outside  of  spec.

There's  one  here,  but  there are going  to  be  more  over  time.

By  1988, we'd  collapsed  the  variability  down  to

this  nice,  tight  little  group

centered  pretty  close  to the  center  of  this  hexagon.

This  made  my  work,  my  job,  so  much  easier,

especially  in  terms  of  adjusting  things from  one  coating   event  to  the  next.

They  became smaller  and  smaller  adjustments,

and  eventually  not  having  to  adjust.

In  summation,

there  are  many  standard quality  improvement  tools.

You  don't  have  to  use  all  of  them.

Pick  the  ones  that  fit  your particular  situation  and  use  them.

Technical  staff  should  define the  formulas  and  specifications.

We  found  a  huge  benefit  to  having the  operators  in  control  of  the  process.

They're  going  to  need  plenty  of  support,

but  this  is  the  only  way  to  get  the really  rapid  feedback

on  what's  actually  going  on.

You  got  to  keep  it  on the  simple  side  to  make  this  work.

And  most  important  of  all,

you  got  to  celebrate  those  opportunities to  learn  and  make  improvements.

That's  the  end  of  my  presentation.

Repeat  the  contact  information.

If  anybody  has  questions, I'll  be  glad  to  answer  them.

Thank  you  very  much.