cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Choose Language Hide Translation Bar
My Gauge Isn’t as Good as It Could Be—Will Its Errors Cost Money? And How Much? (2023-EU-30MP-1277)

Jerry Fish, JMP Systems Engineer, SAS
Jason Wiggins, Senior Systems Engineer, JMP

 

All gauges have errors. They might be minuscule, or they might be large, but they always exist. Large or small, the errors lead to gauges having some likelihood of making Type 1 and Type 2 errors (passing a bad part or failing a good part). The mistake likelihood is higher for parts that lie near the specification limits. These errors cost real money! But how do we quantify those costs? This paper builds on the results shown in a 2022 JMP Americas Discovery paper (2022-US-30MP-1123) that discussed how to quantify the gauge performance and how to set “informative manufacturing specs” (or guardbands) to improve the gauge’s performance in segregating good vs. bad parts. In this paper, we extend the learning and script functionality as we discuss how to combine gauge characteristics with the costs of individually passing a failed part, rejecting a good part, and projecting production volumes. This gives insight into risk analyses, e.g., how much I should budget to account for gauge errors, whether (or how much) to spend on improving our gauge, etc.

 

 

Hi,  I'm  Jerry  Fish.  I'm  a  support  engineer  with  JMP,  helping  customers  in  the  central  part  of  the  United  States.  Today's  talk  is  entitled  My  Gauge  Isn't  as  Good  as  It  Could  Be—  Will  Its  Errors  Cost  us  Money  and  how  much?

I'm  Jason  Wiggins,  also  a  senior  systems  engineer,  and  I  support  semiconductor  users  in  the  Western  United  States.  This  talk  is  a  follow  on  to  one  we  did  for  discovery  Americas  in  2022.  In  our  first  talk,  we  introduced  the  notion  that  measurement  systems  are  integral  to  our  businesses.   In  fact,  we  have  many  measurement  systems  we  interact  with  in  our  daily  lives.  Along  with  that  idea,  we  introduced  the  notion  that  measurement  system  or  gauge  variation  can  impact  decisions  in  real  world  inspection  situations.  We  introduced  gauge  performance  curves  as  a  way  of  visualizing  gauge  variation  and relative  to  specification  limits.   In  this  talk,  we'll  extend  that  and  explore  the  costs  associated  with  gauge  variation  through  a  fun  role  play  conversation  between  a  quality  manager  of  an  automobile  manufacturing  plant,  that'll  be  Jerry,  and  I'll  be  acting  as  a  quality  consultant.   To  kick  things  off,  I'll  get  on  a  quick  team  call  with  Jerry.  Hi,  Jerry.

Hi,  Jason.  How  are  you  doing?

I'm  doing  pretty  good.  Thanks  for  spending  a  few   minutes  with  me.  As  a  quality  consultant,  I  help  quality  stakeholders  like  yourself  understand  and  improve  processes.  Now,  I  prefer  using  JMP  as  it's  a  general  purpose,  easy  to  use  data  analytics  package  that  has  many  quality  and  process  control  features.   JMP  makes  quick  work  of  the  analytics  part  of  process  improvement,  so  more  time  can  be  dedicated  to  actually  improving  the  process.

Well,  it  is  nice  to  meet  you,  Jason.  Just  to  let  you  know,  though,  we  already  have  software  in  place  for  our  internal  quality  programs,  so  I'm  not  really  sure  what  your  software  can  do  that  we  cannot  already  do.   Can  we  make  this  quick?

I  understand  completely,  Jerry.  I'll  try  to  make  the  most  of  your  time  today.  First,  can  you  tell  me  a  little  bit  about  your  company  and  your  quality  program?

Sure,  happy  to.  Acme  Motors  has  built  a  reputation  with  our  customers  of  manufacturing  the  highest  quality  cars.  We're  always  concerned  with  quality.  We  have  various  gauges  that  we  use  to  ensure  our  quality  stays  high.  We've  been  doing  this  for  years,  and  frankly,  we  think  we're  pretty  good  at  it.

I'm  familiar w ith  Acme  Motors  and  your  high  quality  reputation.  My  consulting  team  and  I  have  recently  been  working  with  manufacturing  companies  like  yours  to  advance  the  use  and  effectiveness  of  gauge  studies.  Measurement  systems  analysis,  another  way  of  saying  that.  One  of  the  things  we  seek  to  understand  are  the  monetary  costs  associated  with  the  gauges  used  to  measure  process  quality  characteristics  in  your  manufacturing  plant.  Have  you  quantified  how  much  any  of  your  gauges  are  costing  your  business?

I'm  not  sure  what  you  mean.

Well,  gauges  are  not  perfect.  They  make  mistakes.  Sometimes  they'll  throw  away  good  parts  and  sometimes  they'll  pass  bad  parts.  Unless  you  have  a  perfect  gauge  and  really  no  one  has  these,  these  mistakes  are  inevitable.

I  suppose  so,  but  we've  done  gauge  studies  that  say  our  gauges  are  good.  Well,  some  of  them  are  actually  categorized  as  adequate  by  the  AI AG  guidelines.  Doesn't  that  mean  we're  okay  to  use  them?

Well,  possibly,  but  there  is  a  lot  more  to  the  story  than  just  using  good,  adequate,  and  poor  AI AG  gauge  assessment  criteria.  For  example,  have  you  seen  a  gauge  performance  curve?

I  can't  say  that  I  have.  No.

Now,  this  is  what  one  looks  like.  The  X  axis  shows  the  true  part  values  and  the  lower  and  upper  specification  limits  are  shown  with  these  lines.  The  Y  axis  shows  the  probability  of  passing  a  part.  If  you  have  a  part  that  is  truly  good  but  very  close  to  the  lower  spec  limit,  there's  almost  a  50 %  chance  the  gauge  will  recommend  that  you  throw  it  away.  That's  one  way  of  thinking  about  it.  But  also,  there's  nearly  a  50 %  chance  that  you  will  accept  a  part  that  is  truly  bad  and  near  the  lower  spec.

Very  interesting.  What  happens  if  we  could  change  the  variation  of  the  gauge  then?

Well,  the  shape  of  this  curve  definitely  depends  on  how  good  your  gauge  is.  Let's  play  with  this  just  a  little  bit.  What  if  we  could  reduce  the  variation  by  a  factor  of  10?  Make  a  quick  change  here  and  replot  our  gauge  performance  curve.  If  this  is  possible,  we  will  correctly  accept  or  reject  more  of  the  parts.  We're  moving  from  incorrect  to  correct  when  we  do  this.  Let  me  break  from  the  role  play  for  just  a  moment.  The  gauge  performance  curve  I  am  showing  is  an  add  in  that  we  made  for  our  2022  Discovery  Americas  presentation.  The  add  in  is  available  on  the  community.  Back  to  you,  Jerry.

That  is  really  an  interesting  chart,  Jason.  I  don't  think  we  do  anything  like  that.  What  you're  saying  is  that  the  gauge  errors  contaminate  the  measurements,  but  all  I  have  is  the  imperfect  measurement.  Your  gauge  performance  curve  is  plotted  versus  true  part  values.  I  wish  I  knew  those  true  part  values,  then  I  could  know  exactly  which  parts  to  keep  and  which  to  throw  away.  Is  there  a  way  I  can  know  the  true  part  value?

We  could  know  that  directly  if  we  had  that  ever  elusive  perfect  gauge,  which  we  don't.  We  really  can't  ever  get  to  the  level  of  knowing  the  true  value  of  an  individual  part,  but  we  can  estimate  the  true  part  distribution  given  our  knowledge  of  the  gauge  characteristics  and  the  measured  part  distribution.

How  would  you  do  that?

Well,  if  we  assume  that  gauge  errors  are  normally  distributed,  and  for  the  moment,  let's  ignore  any  bias  or  linearity  problems  that  you  might  have,  and  that  we  have  the  measured  part  distribution.  If  we  have  that,  we  can  back  out  the  variance  of  the  true  part  distribution  using  a  simple  equation.  That  simple  equation  is  just  the  difference  between  the  measured  part  variance  and  the  gauge  variance.  The  plot  on  the  right  is  shown  for  a  situation  where  the  measured  variance  is  25,  the  gauge  variance  is  16,  and  if  we  subtract  those  two,  the  true  part  variance  is  nine.   We're  beginning  to  get  the  parameters  for  that  distribution  because  we  know  the  results  of  our  gauge  study  and  we  understand  the  variance  associated  with  our  gauge.

Now,  we  would,  from  this,  build  a  normal  distribution  that  centered  on  the  measured  distribution  mean  with  the  new  standard  deviation.  A gain,  the  result  of  which  is  going  to  look  like  the  plot  on  the  right.  In  the  plot,  the  blue  bars  represent  your  measured  part  distribution.  The  areas  above  and  below  the  spec  are  are  shadeded  in  pink.  Notice  that  the  measured  part  distribution  is  much  wider  than  the  true  part  distribution.  The  measured  distribution  is  what  you  get  when  you  run  the  true  part  distribution  through  your  imperfect  gauge.

Okay,  that  makes  sense,  at  least  a  simple  case.   How  do  you  relate  this  to  what  it's  costing  my  company?

Well,  we  can  use  this  information  in  a  numeric  simulation  to  characterize  the  mistakes  that  our  gauge  is  going  to  make.  When  we  do  that,  we  can  generate  a  part  inspection  table  like  this.

Let  me  study  this  table  for  a  minute.  My  eye  is  immediately  drawn  to  the  center,  the  green  box  that  says  95.4 %.  Am  I  interpreting  this  right?  95.4 %  of  my  total  production  is  truly  good  and  we're  shipping  it.

Correct.

That's  a  good  thing.  Now,  looking  at  the  first  and  last  columns,  if  I  add  18  and  25,  let's  see,  that's  about  0.043 %  of  my  production  parts  are  truly  low  parts.  A nother  0.041 %  on  the  last  column  are  truly  high.  This  is  bad.  It  says  my  process  is  making  bad  parts  that  must  be  thrown  away  or  reworked.   I  see  another  problem.  If  I  look  at  that  center  column  and  I  add  those  all  together,  I  get  99.9 %  of  my  production  parts  that  truly  are  good.   It  says  that  the  gauge  is  identifying  2.3 %  of  those  as  too  low  and  2.3 %  is  too  high  as  well.  Now,  the  customer  doesn't  care  about  that.  They're  still  getting  good  parts, b ut  I  certainly  do.  I'm  making  good  product  and  I'm  throwing  it  away.  Worst  yet,  look  at  that  center  row,  those  red  squares.  There's  another  0.036,  18  and  18,  of  truly  bad  parts,  parts  that  are  too  low  or  too  high  that  are  being  accepted  by  this  measurement  gauge.  This  is  serious.  I  do  not  want  to  ship  bad  parts  to  my  customer  if  I  can  help  it.

That's  right.  This  is  cool.  You're  beginning  to  see  the  cost  of  having  an  imperfect  gauge.

This  is  really  interesting.  It  shows  that  if  I  don't  do  something  about  my  imperfect  gauge,  I'll  risk  accepting  bad  parts  and  throwing  away  good  parts,  both  of  which  are  bad  for  my  business.   On  the  other  hand,  I  think  we've  got  a  way  to  handle  this,  Jason.

Okay,  what's  that,  Jerry?

Well,  we  use  something  called  guard  bands.  These  are  our  bands  that  are  set  inside  the  specification  limits.  If  we  set  them  far  enough  inside  the  spec  limits,  we  can  reduce  and  essentially  eliminate  shipping  bad  parts.  Doesn't  that  fix  at  least  part  of  our  problem?

At  least,  guard  bands  are  definitely  a  good  way  to  reduce  the  percentage  of  bad  parts  that  make  it  through  your  inspection  process.  A  lot  of  companies  use  them.   Have  you  considered  the  fact  that  improving  quality  using  guard  bands  comes  at  the  expense  of  throwing  away  good  parts?

Honestly,  that  has  occurred  to  us,  but  we  haven't  tried  to  quantify  that  damage.

Well,  let's  extend  this  example  out  a  little  bit  more  and  let's  just  assume  that  we  bring  those  specifications  in  by  one  unit  of  measure.  We'll  call  these  guard  band  limits.  Our  lower  guard  band  limit  would  be  41  and  our  upper  guard  band  limit  would  be  59.  We're  going  to  use  this  as  our  inspection  screening  values  instead  of  the  original  upper  and  lower  specs.  Now,  we  can  do  the  same  numerical  simulation  and  update  the  results.  Let's  just  take  a  look  at  the  differences  between  the  tables.  Can  you  see  how  the  percentages  have  changed?

We  went  from  shipping  roughly  0.04 %  of  parts  that  were  truly  bad  to  only  shipping  0.03 %  of  bad  parts.  That  looks  successful.  Maybe  we  could  even  squeeze  our  guard  bands  in  further  and  improve  that.  Especially  given  our  high  production  volume.  We're  talking  real  bucks  here.

It  is.   Also  notice  how  many  truly  good  parts  are  now  being  screened  out.  Every  time  you  screen  out  and  throw  away  good  part,  it  is  costing  your  company  money.

Well,  you're  right  about  that,  Jason.  Is  there  a  way  to  look  at  this  monetarily?  What  if  we  assume  that  a  bad  part  in  the  simulation  results  in  a  bad  car?  Can  we  input  the  cost  of  scrapping  the  car  and  see  how  that  affects  the  bottom  line?

Absolutely,  we  can  do  that.  I'll  need  to  get  a  little  information  from  you,  though.  First,  how  much  does  it  cost  to  make  the  car?

Yeah,  let's  say  for  the  sake  of  this  demonstration,  $35,000.

Okay,  great.  That  means  for  each  rejected  car,  it  costs  your  company  $35,000.  You  might  manufacture  in  rework  costs  here,  but  let's  say,  for  example,  we  just  throw  the  car  away.  Now  we  need  production  quantity.

I  don't  know.  Let's  just  choose  a  million  cars.

Okay,  great.  Now,  how  much  do  you  charge  for  a  truly  good  car  that  makes  it  to  a  dealership?

The  dealerships  buy...  Let's  just  say  they  buy  these  cars  from  us  for  $40,000.

Okay.   If  I  understand  this  right,  your  profit  per  car  is  that  40K  minus  the  35 K  and  your  profit  has  been  $5,000  per  car.

Right.

Last  thing,  do  you  know  the  cost  associated  with  selling  a  bad  car?

That's  a  little  tougher.  There  are  the  obvious  costs  of  repairs  to  the  bad  car  or  potential  cost  of  return.  Those  are  relatively  easy  to  calculate,  but  there's  also  damage  to  our  reputation.  Our  customers  demand  quality,  and  if  we  start  putting  bad  product  out  the  door,  it  can  quickly  get  out  of  hand  and  result  in  lost  future  sales.  That's  a  lot  more  difficult  to  calculate.   I  know  you  need  the  number.  For  the  sake  of  argument,  let's  just  say  that  totals  to  $50,000  per  bad  car  that  makes  it  out  into  the  market.

Excellent.  Let's  take  a  look  at  the  profits  and  losses.  Same  simulation.  Just  review,  make  sure  that  we're  looking  at  the  correct  values.  You  told  me  that  manufacturing  cost  per  car  is  $35,000.  You  then  sell  that  to  a  dealer  for  $40,000.  Our  profit  is  $5,000.  Cost  of  selling  a  bad  car  is  $50,000.  We're  going  to  look  at  this  across  a  1  million  car  production  run.  Have I  captured e verything,  right?

I  think  that  looks  good.

All  right.   If  we  look  at  the  net  profits  and  losses,  you  stand  to  make  about  346  billion  from  the  1  million  cars  you  make.

That  sounds  good.

Not  bad.  The  total  profit  from  the  truly  good  cars  that  are  shipped  is  about  371  billion.  The  loss  due  to  making  truly  bad  cars  that  are  caught  in  your  inspection  is  199  million,  which  is  the  sum  of  98  million  plus  101  million.

Okay.

The  law...  I let  you  digest  for  a  second?

Yeah,  I'm  following.

Okay.  The  laws  due  to  shipping  truly  bad  cars,  this  is  the  one  you  are  really  concerned  about,  is  137  million,  which  is  68  million  plus  69  million.  Finally,  the  loss  from  scrapping  truly  good  cars,  this  is  what's  costing  your  business,  is  $25  billion.  That's  quite  a  lot.  That's  the  sum  of  $12.4  million  and  12.4  million.

That's  fascinating  and  also  a  little  depressing  that  we're  losing  that  much  money.   If  you  change  things,  let's  say  you  change  the  guard  band  settings,  will  the  total  net  profit  change?

That's  right.  That's  definitely  true.  You  could  see  that  change.

In  that  case,  then  could  there  be  an  optimum?  I  can  imagine  widening  the  guard  bands  or  narrowing  them  and  looking  at  the net  profit,  would  there  be  an  optimum  for  that  net  profit  peaks  out?

Yes,  you  can  definitely  explore  that  trade- off  in  a  lot  of  different  ways.  You  could  answer  questions  like,  how  would  improving  my  gauge  by  a  factor  of  10,  like  we  showed  with  the  gauge  performance  curve,  improve  my  profitability?  Or  how  much  can  I  afford  to  spend  on  fixing  or  replacing  a  gauge?  If  we  know  what  the  costs  to  the  company  are  for  our  measurement  system,  then  we  can  justify  the  cost  of  fixing  or  replacing  gauge.  Also,  just  to  your  point,  what  if  I  adjusted  my  guard  bands?  We  can  definitely  answer  that  question.  A nother  common  one  is  what  if  I  improve  my  process  capability?  I  just  tighten  the  variation  in  my  process,  what  does  that  do  to  my  profits  and  losses?

I  could  trade  that  off  against  the  cost  of  improving  that  process  capability.  Interesting.  Well,  I  must  say,  Jason,  I'm  impressed.  This  has  been  a  good  use  of  time,  but  I  think  I  owe  it  to  my  company  to  muddy  the  waters  just  a  little  bit.  This  is  all  great  for  normal  distributions  and  simple  gauge  errors  and  those  kinds  of  things.  Those  calculations  that  you've  shown  are  easy.  But  what  if  I  have  gauge  linearity  or  bias  problems?  Or  what  if  I  have  a  skewed  distribution,  which  is  really  pretty  typical  in  my  company.  We  rarely  run  into  the  nice  bell  shape  curve.  Getting  a  true  part  distribution  out  of  the  measured  part  distribution  becomes  a  lot  more  difficult  than  just  using  that  simple  formula  you  showed  earlier.  Can  you  even  can  do  that?

Absolutely.  We  are  writing  an  add- in  that  will  make  you  able  to  define  the  shape  of  any  measured  part  distribution.  W e  can  do  the  same  exercise  with  measured  part  distributions  that  are  normal  or  log- normal,  uniform,  Weibull,  or  even  a  custom  distribution.   It's  an  add- in  we're  working  on.  It's  a  work  in  progress.

All  right,  that's  fantastic.  I'm  ready  to  buy  in.  When  will  that  be  available?

We  have  the  basics  of  the  add  in  worked  out,  but  we  need  some  time  to  make  it  more  user  friendly.  We'll  be  working  on  that  in  the  coming  few  months.  Probably  before  midyear,  we'll  have  that  wrapped  up.  When  it's  done,  we'll  post  it  on  the  JMP  website  in  our  community  file  exchange.

A  few  months,  really?  I'll  forget  all  this  by  then.

That's  okay.  We  recognize  that.  Once  our  ad  in  is  ready  for  prime  time,  we'll  announce  a  series  of  open  to  the  public  seminars  where  we  will  go  into  detail  about  what  you've  seen  here,  as  well  as  other  aspects  like  relating  these  concepts  to  Donald  Wheeler's  EMP  methodology,  which  is  another  personality  in  the  Measurement  Systems  Analysis  platform  in  JMP.  Here's  a  quick  peek  at  the  topics  for  the  up  and  coming  talks.

We'll  spend  more  time  elaborating  on  how  gauge  studies  that  are  using  the  AI AG  classification  that  we  talked  about  earlier,  we'll  talk  about  how  that  can  lead  to  unrealistic  gauge  assessments.  We'll  also  explore  how  Wheeler's  Evaluating  the  Measurement  Process,  the  EMP  method,  can  provide  us  more  realistic  gauge  classification.  We're  going  to  present  the  problem  with  AIG  and  present  the  solution  using  Wheeler's  methods.  We'll  also  show  how  EMP  method  can  advise  us  on  how  to  use  our  gauge.  How  do  we  use  it  in  the  production  process?  One  example  that  we'll  be  covering  is  objectively  setting  guard  bends.  The  remaining  topics,  hey,  we'll  spend  a  little  bit  more  time  interpreting  gauge  performance  curves,  talk  about  how  to  blend  performance  with  part  variation  to  determine  cost  associated  with  imperfect  gauges.

Really,  that  is  what  we're  talking  about  today,  but  we  feel  like  we  need  to  extend  that  a  little  bit  so  that  we  all  understand  how  that  works.  Final  two  topics,  how  can  Wheeler's  calculations  be  factored  into  this  gauge  cost  conversation,  and  how  to  understand  gauge  cost,  again,  to  the  point  of  non- normal  part  distributions.

That's  perfect.  Can  you  make  sure  that  I'm  on  that  invitation  list?  I  want  to  make  sure  that  everyone  in  my  quality  department  attends  your  seminars.

Sure  thing,  Jerry.  Anything  else  I  can  do  for  you  today?

Yes.  Get  back  to  work  on  that  ad- in.  The  sooner  it's  available,  the  better.

Will  do. All  right,  this  concludes  our  presentation.   I'll  say  that  as  we  were  doing  research  for  this  talk,  we  uncovered  many  concepts  that  are  important  to  understanding  how  to  use  measurement  systems.  We  feel  like one  of  these  concepts  deserve  more  time  than  we  had  in  our  talk  today.   We  look  forward  to  continuing  the  conversation  with  you  in  the  coming  months.  Any  closing  thoughts,  Jarry?

Just  that  if  you've  kind  folks  that  are  attending  today,  if  you're  interested  in  attending  those  upcoming  seminars,  please  let  your  local  JMP  support  person  know  or  your  support  team  know,  and  they'll  make  sure  that  you're  included  on  that  invitation  list.

Excellent.  With  that,  thank  you,  everyone,  for  attending.

Thanks,  all.