cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Choose Language Hide Translation Bar
Growth Curve Modeling to Measure Impact of Temperature and Usage Amount on Detergent Performance - (2023-US-30MP-1462)

A. Narayanan, Adjunct Assistant Professor, University of Cincinnati, OH, USA
Zhiwu Liang,  Procter & Gamble, Brussels, Belgium

 

In this presentation, we use the longitudinal analysis capability of the Structural Equation Modeling (SEM) platform in JMP to measure the impact of temperature and usage amount on detergent performance from the consumer perspective using a measure of the overall rating of product as a surrogate of overall performance. In this diary study measured over time, data were collected from consumers who used one of two products in three phases of four-week time intervals. Using data collected from Week 5 to Week 9, we modeled the trajectories of the performance of the detergent in relation to the temperature and usage (number of pods). Using standard SEM fit measures, we found the linear growth curve model fit the data well for the underlying latent structures. Results showed that one of the test products performed significantly better under cold-wash temperatures and used fewer pods than the other product. This result was a significant win for the company under the sustainability platform and performance under colder wash conditions.

 

 

Hello,  everyone.

 

My  name  is  Zhiwu  Liang,

statistician from  Procter  &  Gamble  Company.

I'm  support of the  business in  Brussels  Innovation  Center  for  P&G.

My  main  job  is  doing the  consumer  survey  data  analysis.

Today,  Narayanan  and  I  will  present

the  G rowth Curve Modeling to  Measure  Impact

of  the  Temperature  and  Usage A mount on  Detergent  Performance.

Next  slide,  please.

Here  is  the  contents  we  will  cover  today.

First,  I  will  give  the  brief  introduction about  the   structural equation models

and  a  bit  about  the  data we  will  be  using  for  our  modeling.

Then  I  will  turn  to  Narayanan to  introduce  the   growth curve modeling,

model  building  process  plus  the  JMP  demo.

Without  showing,  I  will  present the  conclusion  and  next  steps.

Next  slide,  please .

The   structural equation modeling

is  a  multivariate  technique

that  is  used  to  test  a  set  of  the  relationship

between  the  observed and  the  latent  variables

by  comparing the  model  predicted  covariance  matrix

and  observed  covariance  matrix.

In  SEM,  what  we  have  done  is,

observed  variables  are  manifest  variable

as  the  indicator  for  latent  variables,

which  is  using the  measurement  model  to  construct.

Latent  variables  form  a  regression  model

to  build  a  network which  we  call  the  structure  model.

Here  is  an  example with  the  three  latent  variable,

eight  o bserved  variable  in  JMP, so  the  SEM  structure.

As  you  can  see  in  the  button  left  chart,

the  circle  represent  the  latent  variable,

which  is  calculated through  the  indicators  like  cleaning,

as  the  latent  variable is  indicated  by  the  full  square

represent  the  manifest  variable

overall  cleaning,  stain  removal, whiteness  and  brightness.

Same  as  the  freshness,  latent  variable indicated  by  the  three  manifest  variable.

If  you  look at  the  right  side  of  the  window,

the  loading  window  show the  structure  for  the  measurement  model

how  this  individual  latent  variable relate  to  the  indicator.

The  button  of  the  regression  window   show the  two  regression  model:

cleaning  drive overall rating, freshness  dry  overall rating.

This  is  the  structure for  the  structure  equation  model.

Next  slide,  please.

The  data  we  use for  our   growth curve modeling

is  the  survey  data  we  conduct in  the  France  with  the  119  consumer.

We  divide  this  119  consumer  into  groups.

Sixty  of  them  use  control  products,

which  is  the  Ariel, soluble  unit  dose,  the  pods,

in  our  data  set,  marked  as  0.

Another  59  consumers  use  test  product is  the  Ecolabel  product,  code  as  1.

Each  consumer, during  the  12  weeks  of  the  test,

first  four  weeks, they  use  their  own  products.

Then  they  will  go to  the  eight  week's  test  week,

use  one  of  our  assigning  products, either  use  the  Ariel  SUD  or  Ecolabel.

Then  for  each  time  of  the  wash,

the  consumer will  fill  in  the  questionnaire,

provide  some  information about  their  washing  behavior,

such  as  the  washing  temperature,

number  of  the  pods  used, soil  level  of  the  fabric,  how  dirty  it  is,

and  overall  rating  of  the  performance for  the  product.

Our  modeling  objective  is  try  to  test if  there  is  a  product's  effect

on  the  overall  performance  rating,

washing  temperature on  the  overall  performance  rating,

number  of  the  pods  used for  overall  rating

for  each  of  the  wash.

Next  slide,  please.

Since  every  consumer, they  have  a  different  washing  habit,

they  have  different  condition,

not  all  of  the  consumer  has  the  same number  of  wash  during  the  test  week.

Therefore,  to  make  every  consumer

the  weight  equal in  our  model  building  data  set,

we  first  aggregate  the  consumer  data by  the  panelist  level  by  weekly  basis.

You  take  the  average  washing  temperature

during  that  week for  the  particular  consumer,

number  of  pods  used,

and  the  overall  rating for  each  load  during  that  week.

After  this  aggregate  data,

we  use  the  exploratory  tool like  JMP  Graph  Builder

to  identify  if  there's  any  linear  trend for  overall rating,

for  temperature  trend during  the  test  week,

and  the  number  of  the  pods using  trend  during  the  test  week.

Since  the  exploratory  stage , OAR  is  pretty  stable

in  the  week  9  to  week  12, we  use  the  intercept  only  model  for  OAR.

Then  for  the  temperature  for  the  product and for  the  number  of  the  pods  used

from  this  exploratory  stage,

we  found  there  is  either increasing  or  decreased  trend.

Therefore,  we  use  the  linear  growth  model to  describe  the  temperature  indicator

and  the  number  of  pods  indicator.

To  explain  the  product  impact,

we  also  including  the  product manufactured  variable  in  our  model.

Then  we  first  build  a  growth  curve  model for  temperature  number  of  the  pods,

then  add  this  latent  variable  to  build a  regression  model  from  products  variable,

intercept  of  temperature, slope  of  temperature,

intercept  of  the  number  of  pods  used, slope  of  the  number  of  pods  used

to  intercept  of  the  OAR  to  build multivariate,  the   growth curve model.

Now I  would  turn  to  Narayanan to  introduce  latent   growth curve model.

Narayanan,  it's  your  turn.

Thank  you,  Zhiwu, for  the  great  [inaudible 00:06:49].

Hi,  everyone. My  name  is  Narayanan.

I  am  an  Adjunct  professor at  the  University  of  Cincinnati,

but  I  teach  courses on  data  mining  using  JMP.

I'd  like  to  start  by  giving a  very  broad  definition

of  what  is  latent growth curve modeling.

As  we  go  along, I  may  use  the  letters  LG CM  to  represent

latent growth curve modeling,

and  SEM  to  represent structural equation modeling.

Latent growth curve modeling is  basically  a  way  to  model

longitudinal  data  using  the  SEM  framework.

Because  it  is  built  in  the  SEM  framework,

it  has  all  the  advantages of  specifying  and  testing  relationship,

as  Zhiwu  was  explaining  with  the  example of   structural equation modeling.

A s  a  side  note, I  would  like  to  mention  that  LGCM

is  actually  an  application of  confirmatory  factor  analysis,

which  is  actually  a  submodel within  structural equation modeling

with  the  added  mean  structure,

and  this  will  be  explained when  we  get  into  JMP.

One  of  the  benefits of  using  the  SEM  framework

is  that  we  are  able  to  evaluate  model  fit.

Let  us  look  at  the  statement  there,

which  says,  every  model  implies a  covariance  matrix  and  mean  structure.

What  this  really  means  is  that

the  observed  covariance  matrix and  the  mean  vector

can  be  actually  reproduced by  the  model  parameter  estimates

which  are  estimated using  the   latent growth curve modeling.

The  equality  between  the  two is  what  many  of  these  fit  indices

are  actually  testing.

One  of  the  oldest  one is  the  chi-square  test

and  the  hypothesis  it  is  testing is  actually  listed  there:

the  equality  between  the  population,

and  the  model  predicted  covariance  matrix,

and  the  mean  vectors.

However,  this  test, which  is  one  of  the  oldest,

has  some  watch- out.

One  is  that  the  test  statistic in a   function  is  sample  size,

which  means  that  larger  sample  size will  tend  to  reject  the  model

even  for  trivial  differences.

The  other  one  is  that  the  test  is  global

and  does  not  reflect  the local fit  such as  could  be  measured  by  R-square.

A lso,  the  fit  is  too  exact as  specified  in  the  hypothesis.

We  know  from  the  famous  box  statement that  all  models  are  wrong.

Our  models  are  only  just  an  approximation.

Because  of  this,  there  have  been several  alternative  fit  measures

that  have  been  proposed.

I'd  like  to  mention  three  of  them  here.

The  first  is  the  Root  Mean  Square Error  of  Approximation.

This  is  actually  measuring  model  misfit, adjusting  for  the  sample  size,

which  was  an  issue with  the  chi-square  test.

This  is  actually  a  badness- of- fit  measure, so  lower  numbers  are  better.

But  one  of  the  advantages of  using  this  fit  measure

is  that  we  have a  confidence  interval  for  it,

and  the  suggested  threshold for  this  fit  measure

is  that  the  upper  bound

of  the  confidence  interval is  less  than  0.10.

The next  is  a  Comparative  Fit I ndex and  Non-Normed  Fit  Index.

These  are  relative  estimates, and  they're  actually  testing

how  good  is  your  proposed  model

compared  to  a  baseline  model,

which  is  usually a  model  of  no  relationship.

This  is  a  goodness- of- fit  measure,

and  so  the  suggested  criteria  here is  that  these  fit  measures

cross  a  threshold  of  at  least  0.95.

The  last  one  is  a  Standardized Root  Mean  Squared  Residual.

This  is  actually  an  average squared  residual  of  all  the  elements

in  the  covariance  matrix.

This  is  a  badness- of- fit  measure.

Again, we  are  looking  for  smaller  numbers,

and  the  suggested  threshold  here is  that  this  value  is  less  than  0.08.

On  top  of  all  this,  finally,  do  not  forget  to  check  the  actual  residuals,

the  standardized  residuals.

What  we  are  looking  for  here is  numbers  which  are  beyond

minus 2  and  plus 2  threshold.

The  idea  here is  to  look  at  the  totality  of  fit

and  not  just  any  one  measure.

Having  discussed  fit  measures,

now let  us  look  at  the  longitudinal process  we  want  to  study.

Zhiwu described three  different  processes.

First  one  is  success  criteria as  measured  by  overall  satisfaction  rating

from  week  9  to  week  12.

Then  we  have  got two  time vary ing  covariates.

That  means  these  are  varying  over  time.

One  is  the  temperatures  setting

in  which  the  product  was  used from  week  5  to  week  12,

and  then  the  amount  of  product used  also  from  week  5  to  week  12.

Then  finally, we  have  an  indicator  variable

indicating  what  type  of  product  it  is, and  this  is  a  time invariant  covariate

doesn't  change  with  time.

The  modeling  strategy  we  are  going  to  use,

first,  we're  going  to  visualize  data using  Graph  Builder.

Then  we  are  selecting  a  univariate latent  growth  curve  model

for  each  of  the  processes.

Then  we  combine  all  of  them,

put  together  as  a  multivariate  LGCM.

Then  we'll  finally  test the  hypothesis  that  Zhiwu  proposed,

which  is  how  well  the  product and  other  growth  factors

impact  overall  satisfaction.

We  will  choose  the  simplest  model when  we  build.

I  am  going  to  get  into  JMP.

I  am  running  JMP  18, which  is  an  early  adopter  version,

and  I  am  going  to  show  some  scripts,

and  I  will  show  you  how  I  got to  some  of  these  from  the  JMP  platforms.

The  first  thing  I  want  to  do is  visualize  the  overall  satisfaction,

and  these  are  trajectories.

What  these  are, are  basically  individual on  each  line  from  week  9  to  week  12.

Here,  the  overall satisfaction  plotted  here

for  each  of  the  119  consumers.

They're  basically  one  trajectory for  each  consumer.

If  you  look  at  this  particular consumer,  row  number  16,

that  person's  trajectory is  on  a  downward  trend

from  week  9  through  week  12.

They  started  somewhere  in  the  mid-50s, and  by  the  time  they  are  in  week  12,

their  satisfaction  measure  has  come  down to  about  37.5  on  a  scale  of   0-100.

Let  us  look  at  another  person.

This  person  here who  used  the  Ariel  product,

their  trajectory  is  on  an  upward  swing

going  from  the  mid-70s  probably  to  the  early  90s

by  the  time  they  reach  week  12.

They  are  getting more  and  more  satisfied

week  over  week.

Sorry  for  that.

A  bubble  screen  showing  up.

What  we  want  to  do is  we  want  to  understand

how  different  consumers

are  experiencing satisfaction  over  the  weeks,

and  the  change  in  these  processes for  these  consumers

is  what  we  want  to  model  using  LGCM.

What  I'm  going  to  do is  I'm  going  to  turn  on  the  script,

LGCM  of  overall  satisfaction.

I  have  built  here  three  different  models.

What  these  are  basically  the  latent variable  corresponds  to  an  intercept

for  these  repeated  measures  of  the  overall  satisfaction

from  week  9  through  week  12.

I've  built  three  different  models.

I've  built  a  fourth  model,

which  is  a  simplification of  the  first  model.

I've  built  a  no-growth  model,

which  means  different  people

have  different  levels  of  satisfaction in  the  beginning,  which  is  week  9,

but  then  their  trajectories  flatten  out and  does  not  grow  over  time.

Second  model  is  a  linear  growth  model, which  means  that  trajectories  do  change

in  a  linear  fashion  over  time.

The  third  model  is  a  quadratic  model, which  means  their  trajectories  change

in  a  quadratic  fashion  over  time.

Then  finally,  I've  got  a  simplification of  the  first  model,

but  I'm  assuming  almost  elasticity or  no  change  in  the  variance  across  time.

I'm  going  to  look  at  these  fit  measures

that  I  talked  about

and  choose  the  model  that  fits  the  best.

What  I'm  looking  for is  low  values  of   chi-square,

high  values  of  CFI, which  means  CFI  goes  on  a  scale  from  0-1

and  low  values  of  RMSEA, which  also  goes  on  a  scale  from   0-1.

It  looks  like  all  my  models,  no- growth, linear  growth,  and  quadratic  growth,

fit  the  data  equally  well.

But  however,  I'm  going  to  take the  simplest  of  the  models

because  if  I  look at  the  estimates  as  I  can

in  the  path  diagram,

many  of  these  coefficients relating  to  the  slope,

the  linear  slope  or  the  quadratic  slope,

are  actually  not  significant as  shown  by  the  dotted  lines.

In  this  linear  growth  model, what  we  have  is  an  intercept,

which  measures the  initial  level  of  satisfaction,

and  slope,  which  measures

the  rate  of  increase of  the  satisfaction  over  time

or  rate  of  decrease of  satisfaction  over  time.

S lope  measures  that, intercept  measures  the  initial  level.

We  can  see  all  the  estimates  related  to  the  slope

are  actually  not  significant as  indicated  by  dotted  lines.

The same  is  the  situation for  the  quadratic  model  also.

Therefore,  I'm  going  to  take the  simplest  of  the  model,

which  is  the  no- growth  model for  this  process,

which  is  overall  satisfaction.

Let  me  show  you  how  I  do  this.

In  JMP,  go  under  the  Analyze and  pick  Multivariate  and  choose

the S tructural Equation Model  platform.

Choose  the  repeated  measures, in  this  case  is  OAR  from  week  9

through  week  12.

Drop  them  in  Model  Variables  box and  click  OK.

We  have  got  these four  repeated  measures

available  as  modeling  variables in  the  path  diagram  area.

I  can  build  this  model from  scratch  using  the  path  diagram,

but  JMP  has  made  it  easier by  using  shortcuts.

I'm  going  to  go  under the  Model  Shortcut,  red  triangle,

choose  Longitude  Analysis, and  check  the  linear  latent  growth  curve

or  the  intercept-only  model.

If  I  choose  the  intercept-only  model,

I  get  this  path  diagram which  you  saw  in  my  script.

If  I  run  the  model,

you  will  get  the  estimates and  the  fit  statistic  for  this  model.

If  you  want  to  add the  linear  growth  model

to  do  the  same  thing,  come  under M odel  Shortcuts,

Longitudinal  Analysis, and  Linear  G rowth Curve Model.

Now we  have  got not  only  an  initial  level

as  represented by  the  intercept  latent  variable,

we've  got  the  rate  of  growth of  this  process

as  represented by  the  slope  latent  variable.

We  can  run  this  model.

Click  on  Run,

and  you  get  the  model  estimates, as  I  showed  you  before,

which  are  not  significant for  the  slope  latent  variable.

You  get  the  fit  statistics  right  here under  the  Model  Comparison  table.

T hese  models  are  easy  to  fit  in  JMP using  the  model  shortcut  menu

available  under  the  Model  Shortcut.

I'm  going  to  close  the  one  I  just  created.

We  have  so  far  built

a  univariate  LGCM  for  a  single  process.

I'm  going  to  repeat  the  same  thing for  the  other  two  growth  process  we  have,

and  we're  going  to  look at  the  wash  temperature  trajectories.

Let  me  show  you  how  to  do  this  in  JMP.

In  JMP,  in  Graph,  click  on  Graph  Builder and  open  up  the  temperature  variables.

We  want  to  look  at  temperature from  week  5  through  week  12.

Drop  them  on  the  x-axis.

For  the  type  of  graph  you  want,

choose  the  last  icon in  the  bar  at  the  top.

This  is  a  parallel  plot.

There  will  be  some smoothness  associated  with  this.

Drag  this  letter  bar all  the  way  to  the  left.

There  should  be  no  smoothness  at  all.

Take  the  product  variable, which  is  an  indicator  variable,

put  them  on  Overlay.

Now you  get  individual  trajectories.

If  you  want  to  add the  average  trajectory,

choose  the  sixth  icon on  this  toolbar  from  left.

Click  on  the  Shift  key  and  click  on  this.

Now you  get  that  average  trajectory

of  temperature  used over  these  eight  weeks.

Click  on  Done

to  get  the  plot  with  more  real  estate.

This  is  exactly  the  plot that  I  showed  using  the  script.

You  can  clearly  see  that

from  week  7  onwards, there  might  be  a  growth

in  the  temperature  setting.

It  looks  like  people are  increasing  the  temperature

as  time  progresses   from week 7  through  week  12.

I'm  going  to  close  this.

We  have  a  graph  to  visualize

the  trajectories of  the  temperature  setting.

We  repeat  the  same  thing.

We  want  to  choose a  model  for  that  process.

A s  before,  I  built  the  same  three  models:

a no-growth,  a  linear  growth, and  a  quadratic  growth.

I'm  going  to  look at  the  fit  statistic  here.

This  time,  we  see  definitely a  significant  improvement

in  going  from  the  no- growth to  linear  growth

in  terms  of  the  fit  statistics.

The  quadratic  growth  is  a  marginal increase  over  the  linear  growth  model.

Again,  for  the  same  reason  as  before,

all  the  estimates  in  the  quadratic  slope are  actually  not  significant.

To  keep  things  simple, I'm  going  to  choose  the  simpler  model,

which  is  the  linear  growth for  temperature.

The  last  process  is  the  pod  usage.

This  is  the  number  of  pods.

Now  we  can  see  clearly an  increasing  trend,

more  so  for  the  Ecolabel  product,

which  means  people are  using  more  and  more  products

when  they  use  Ecolabel as  compared  to  Ariel,

which  is  a  P&G  product.

I  want  to  model  this.

Let  me  close  that.

Click  on  the  script for  LG CM  of  pod  usage.

I'm  going  to  look  at  the  fit  statistic.

A gain,  I  see  a  good  model  fit,

especially  the  linear  and  the  quadratic.

For  the  same  reason  as  before, I'm  going  to  choose  the  linear  model.

Here  I  want  to  look  at

the  estimates  for  the  quadratic  slope,

and  this  is  what  I  mean by  not  choosing  the  quadratic  slope

because  you've  got  all  the  parameters point unit  to  that  to  be  not  significant.

Now we  have  got  a  model for  each  of  the  three  processes.

We  chose  a  no-growth  model for  overall  satisfaction.

We  chose  a  linear  growth  model for  low  temperature.

Now I'm  going  to  put  them  all  together

using  a  multivariate, latent   growth curve model.

This  is  basically all  the  three  processes  put  together.

Here , I  want  to  show  you  the  similarity

between  a  confirmatory factor  analysis  model

and  latent   growth curve model as  was  pointed  out  in  the  previous  slide.

You  can  see  that  there  is a  mean  structure  added  to  it

with  a  triangle  with  a  number  one,

and  there  are  lines  going  from  that to  each  of  the  latent  variables.

If  I  right-click  and  use  the  Show  option and  not  show  the  mean  structure,

you  can  see  the  familiar confirmatory  factor  analysis  model

with  latent  variables  and  the  indicators associated  with  each  one  of  them.

We  have   a  single  latent  variable, intercept  for  the  overall  satisfaction.

We  have  two  latent  variables for  the  temperature,

which  is  initial  intercept  and  the  slope.

We  have  the  same  two latent  variables indicating  the  pod  usage.

Initial  level  as  represented by  the  int  pods

and  the  rate  of  change  of  product  usage as  indicated  by  the  slp  pods,

which  is  basically  the  slope  of  pods.

Let  me  put  back  the  means  activated.

Now we  can  actually  look at  the  estimates  of  these,

which  are  really one  of  the  important  pods

of  the  latent   growth curve model.

What  we  have  here  is  an  estimate

of  the  initial  level of  satisfaction  at   week 9

because  that  was  the  starting  time period  for  overall  satisfaction.

That's  about  71  on  a  scale  of   0-100.

This  is  the  average temperature  setting  at  week 9,

which  is  36  degrees  Celsius.

Here  is  the  product  usage,  1.4  pouches.

Here  is  the  rate of  change  of  product  usage

because  there  is  a  slope of  product  usage,  the  latency  variable,

which  is  about  0.02.

People  are  using  slightly  more as  time  goes  on.

That  is  what  we  get.

The  overall  fit  of  this  model is  also  fairly  good.

I  think  we  saw  that.

CFI exactly  at  the  threshold  0.95,

and  our  upper  bound  of  the  RMSEA is  definitely  less  than  0.1.

Now we  go  to  the  last  model,

which  is  the  hypothesis that  Zhiwu  wanted  to  test,

where  we  want  to  see  if  product,

the  indicator  variable, and  the  other  growth  factors

have  a  significant  impact on  overall  satisfaction.

In  order  to  remove  the  clutter,

I  have  not  shown  all  the  indicators.

All  we  are  seeing  is  only  the  circles,

which  represent  the  latent  factors for  each  of  the  growth  curve  models

and  a  single  product  variable indicating  what  type  of  product  it  is.

Again, let  us  look  at  the  fit  of  this  model.

Fit  of  this  model  is  indeed  good.

We  have  a  0.95  for  the  CFI.

We  have  less  than  0.1 for  the  upper  bound  of  the  RMSEA.

We  will  look  at  more  fit  indices

after  we  interpret some  of  the  estimates  here.

I'm  going  to  interpret  the  solid  lines which  are  significant  coefficients.

We  have  a  significant  product  effect

from  the  product  variable to  the  intercept  of  overall  satisfaction.

This  can  be  interpreted  basically as  a  regression  coefficient,

which  is  the  average level  of  satisfaction

for  product  coded  1

minus  the  average  level of  satisfaction  for  product coded  0.

Ariel  is  coded  as  product  0,

so  we  have  much  more satisfaction  with  Ariel,

a  delta  of  negative   9 in  favor  of  Ariel

on  a  scale  of  0- 100.

That  is  a  big  change.

Delta  in  favor  of  the  Ariel  product.

Let  us  look at  the  product  effect  on  pods.

Again,  the  same  way, average  amount  of  product  used

for  product  coded  1  minus  product  coded  0.

This  time,  we  are  using  more of  the  Ecolabel  product.

If  you  are  a  manufacturer  of  Ariel, this  is  good  news  for  you.

A lso,  the  rate  of  change  of  product  use

is  also  more  for  Ecolabel compared  to  Ariel,

or  0.02  pouches  from  week  to  week.

Finally, we  have  the  intercept  of  temperature

having  a  negative  impact on  the  overall  satisfaction,

which  means  higher  temperatures lead  to  less  satisfaction.

Remember,  these  are  products which  are  marketed  as  cold-wash  products.

That  means  they  should  work  better in  cold  temperatures

and  not  higher  temperatures.

I  also  want  to  show  you  where  you  can  look for  other  fit  statistics  beyond

what  is  coming  out in  the  model  comparison  table.

Under  the  S tructural Equation Model in  red  triangle,

if  you  check  on  Fit  Indices, which  I've  already  checked,

there  are  more  fit  indices that  can  be  shown  at  the  bottom.

We  want  to  look  at  CFI  and  RMSEA, which  we've  already  seen,

and  here  is  the  Standardized Root  Mean S quare  Residual,

which  I  discussed.

This  is  also  exactly at  the  threshold  of  0.08.

All  in  all,  in  terms  of  fit  indices, our  model  does  fit  quite  well.

Finally,

I  told  you  not  to  forget  the  residuals.

These  are  normalized  residuals in  terms  of  the  measured  variables.

We  have  21  measured  variables, eight  for  pods,  eight  for  temperatures,

four  for  overall  satisfaction, and  one  for  the  product  variable.

This  is  a  21  by  21  matrix.

What  we  are  looking  for

is  numbers  which  are  outside the  plus  2  minus  2  range.

There  are  just  too  many  numbers to  look  at  in  the  table,

but  JMP  produces  a  heatmap.

Heatmap  option  is  also under  the  red  triangle.

What  we  are  looking  for is  dark  red  or  dark  blue.

Here,  we  have  two  dark  reds

which  are  relationship   between pod  usage  at  week 6 ,

temperature  at  week  12,

pod  usage  at  week  6, and  temperature  at   week 9.

Finally,  we  have  one,

because  this  is  just  a  mirror  image of  the  one  that  is  here.

This  is  the  relationship between  temperature  at  week  9

and  temperature  at  week  10, which  is  not  modeled.

This  could  actually  be  modeled

by  adding  an  error  covariance, which  I  did  not  do.

If  I  did  this,  the  model,  in  fact, would  be  even  better.

I  want  to  go  back  to  the  presentation and  summarize  what  we  have  found.

Oops, sorry,   wrong  slide.

In  terms  of  conclusion, we  started  the  Graph  Builder

to  visualize  our  trajectories,

and  we  built  latent  growth  curve  model using  the  SEM  platform.

We  extended  from  univariate to  multivariate  models.

A ll  our  models,  including  the  last  one, had  acceptable  fit,  in  fact,  good  fit.

Product  had  a  significant  impact  on  OAR,

which  means   Ariel  is  better  than  Ecolabel in  terms  of  its  overall  satisfaction

and  significant  impact on  the  number  of  pods,

which  means  less  product  was  used for  Ariel  compared  to  Ecolabel,

and  also  from  week  to  week.

Intercept  had  a  negative  impact  on  OAR, which  means  people  prefer

lower  temperature  setting than  higher  temperature  setting.

If  you  are  a  P&G  manufacturer, this  is  good  news  for  you

because  Ariel  works  better  than  Eco label

in  this  modeling  framework that  we  have  done.

I'm  going  to  turn  it  over  to  Zhiwu  to  see  what  the  next  steps  are

from  this  model  results.

Zhiwu?

Thank  you  very  much.

Thank  you,  Narayanan, and  very  excellent  presentation

and  wonderful  demo.

As  Narayanan  mentioned,

the  modeling  results  prove the  product  has  a  significant  impact

to  the  overall satisfaction of  the  performance

of  the  detergent  products  in  our  test.

This  result  provides  us the  confidence  we can make  a  very  clear  claim,

Ariel  products  is  a  favor  to  the  cold wash can  be  used  less  than  the  normal  products.

This  is  also  modeling  confirm the  consumer  behavior  change.

If  you  use  Ariel  product, you  will  have  more  washing  loads

go  to  the  cold wash, use  less  energy  and  use  less  product.

Also,  we  plan  to  conduct  bigger  size consumer  study  for  including  the  more

covariates  variables  in  the  future modeling  stage  like  the  additive  usage

and  the  washing  cycle  of  every  wash and  the  low  size  per  wash.

This  is  our  next  step.

Next  slide.

Now we  would  like to  take  question  if  you  have  any.

Thank  you  very  much for  attending  the  presentation.

We  look  forward  to  your  questions probably  in  the  JMP  Summit.