cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Choose Language Hide Translation Bar
Using JMP to Analyze and Speed-Up a Milling Operation During Process Scale-Up (2022-US-30MP-1139)

Scott Allen, Sr Systems Engineer, JMP
Jerry Fish, Sr Systems Engineer, JMP

 

Many industries (particularly pharmaceuticals) use milling processes to reduce the particle size of key raw materials. The aim of the milling process is to reduce the average particle size and achieve a targeted particle size distribution (PSD). While there are many types of milling techniques, the key performance indicators (KPIs) are typically mill time, PSD, average particle size, and other industry-specific targets.

 

Bringing a milling process from lab scale to manufacturing scale can present many challenges. Process factors, such as heat transfer, mass transfer, milling times, and additive amounts, can all substantially differ from the small-scale process. Thus, a thorough understanding of the milling process is required to maximize a successful scale-up.

 

This talk begins with a description of typical challenges seen in milling scale-up operations. We follow this with an analysis of a sample data set that demonstrates how JMP can be used to quickly and efficiently resolve these problems. We use data visualization, definitive screening designs, augmented DOEs and functional data exploration to help with the scale-up process.

 

 

-Hi,  I'm  Jerry  Fish I'm  a  technical  engineer  with  JMP.

I  cover  several  Midwestern states  in  the  US.

I'm  joined  today by  one  of  my  colleagues  Scott  Allen,

who's  also  a  technical  engineer  for  JMP

and  he  supports  several other  Midwestern  states.

Hi,  Scott.

-Hey,  Jerry,  good  morning.

-Good  morning.

Today  we  want  to  talk  about  a  variety,

a  relatively  new  way  to  analyze  data, specifically  from  milling  operations,

where  we  want  to  learn  about  milling to  help  with  a  scale- up  milling  process.

-W e  both  have  a  strong  interest in  process  optimization  using  DOE

and  in  modeling  response  curves

using  the  Functional  Data  Explorer in  JUMP  Pro,

and  we  wanted  to  bring  those  together for  today's  presentation.

And one  of  the  first  examples I  saw  doing  this  sort  of  analysis

was  the  milling  DOE that's  in  the  sample  data  library,

where  the  goal  is  to  optimize an  average  particle  size.

So  as  we  were  talking about  possible  topics  for  today,

we  thought  it  would  be  interesting to  see  if  we  could  extend  that

instead  of  optimizing  that just  the  particle  size,

could  we  actually  optimize  the  particle size  distribution  response  curve?

-So,  milling  has  many different  applications.

You'll  find  it  in  anything  from  mining, food  processing,

making  toner  in  the  printing  industry, making  pharmaceutical  powders.

At  the  most  basic  level, a  milling  process  is  used

when  we  want  to  reduce  the  particle  size of  a  certain  substance

and  produce  uniform  particle  shapes and  size  distribution

of  a  starting  material.

Often  some  type  of  grinding  medium is  added  to  accelerate  the  process

or  to  control  the  size and  shape  distribution

of  the  resulting  particles.

In  each  application  the  desire is  to  get  the  right  particle  size,

say  the  median  or  the  mean  particle  size,

with  a  controlled  predictable particle  size  distribution.

In  the  scenario  we  discussed  today,

we  have  an  existing manufacturing  milling  operation

that  produces  a  pharmaceutical  powder.

It  has  good  performance  today,

creating  the  right  medium  particle  size and  a  narrow  particle  size  distribution.

A  full  disclosure  this  scenario and  the  resulting  data  are  invented.

Scott  and  I  didn't  have  access to  non- confidential  data

to  present  in  this  paper.

However,  even  though  the  data are  fabricated,

the  techniques  that  we're  about  to  show are  applicable  for  real  world  problems.

The  picture  on  the  left shows  a  typical  agitated  ball  mill.

The  material  to  be  milled, enters  at  the  top

and  continuously  flows  into  the  vessel where  an  agitator  rotates

the  material  and  the  grinding  medium to  affect  particle  size.

The  resulting  particles are  then  vacuumed  out  of  the  vessel

as  they're  milled.

Management  has  said  they  need to  increase  the  production  output,

something  we're  all, I'm  sure,  familiar  with.

They  are  considering  building a  new  milling  line,

but  before  investing  all  that  capital, they'd  like  to  investigate,

can  we  simply  increase  the  throughput of  our  existing  equipment?

So  manufacturing  made  some  attempts at  doing  that,

they  adjusted  their  process,

and  while  they  can  affect the  median  particle  size,

the  new  output has  odd  particle  size  distributions.

So  manufacturing  came  back  to  R& D where  Scott  and  I  are,

and  asked  us  to  go  to  the  pilot  lab

and  see  if  there's  any  combination of  settings  that  might  improve  throughput.

Scott,  what  parameters  did  we  look  at?

-In  this  case,

we're  going  to  use  six  different  factors for  a  DEO.

There's  going  to  be  four continuous  factors

so  agitation  speed, the  flow  rate  of  carrier  gas,

the  media  loading as  a  percentage  of  the  total,

and  then  the  temperature  of  the  system.

And  then  there's  two  categorical  factors,

the  media  type  and  maybe  the  mesh  size of  a  pre  screen  process.

And  so  determining  those  factors

is  fairly  straightforward  these  are  known to  affect  particle  size  distributions

and  things  like  that, but  the  response  is  still  a  challenge.

And  in  this  case,  I'm  not  sure how  you  would  actually  go  bout  doing  this

if  you  couldn't  model  the  response  curve like  we're  going  to  do.

So  Jerry,  in  your  experience, how  would  you  have  done  this  before?

-S o  this  next  slide  shows    typical  particle  size  distribution

or  particle  size  density  plot.

And  we've  got  a  plotted as  percent  per  micron  versus  size.

But  you  can  think  of  this as  just  a  particle  count

on  the  y- axis  or  a  mass  distribution,

it's  just  a  histogram  representing the  distribution  of  particles.

What  you're  seeing  on  your  screen,

this  might  be a  good  particle  size  distribution,

has  a  nice  narrow  shape  with  a  peak

at  the  desired  median  particle  size.

But  how  do  we  characterize this  distribution

if  we  want  to  do  a  test  to  adjust  it?

Well,  we  might  characterize  the  location with  the  mean,  median,  mode

of  the  distribution.

And  we  might  characterize  the  width via  a  standard  deviation

or  maybe  a  width  at  half  peak  height,

those  are  typical  ways we  might  measure  that.

But  when  manufacturing  tried to  turn  various  production  knobs

in  their  process to  speed  up  the  throughput,

they  saw  varying  degrees of  asymmetry  in  the  distribution.

Maybe  this  was  due  to  incomplete  milling of  the  pharmaceutical  material,

or  perhaps  there  were  temperature  effects that  caused  particles  to  agglomerate,

we  don't  really  know.

But  now  the  half  width

isn't  really  representing  the  shape of  that  new  curve.

So  we  might  turn to  calculating  maybe  percentiles

along  the  width  of  the  curve,

maybe  the  10th  percentile  of  particles that  fall  below  a  certain  point,

20%  below  this  point, 90%  below  this  point,  and  so  forth.

But  it  gets  even  tougher  when  we're  trying to  describe  something  like  this  shape

where  there  are  two  very  pronounced  peaks, or  this  shape,

which  I  tend  to  call  a  haystack where  it's  very  broad,  doesn't  have  tails.

What  do  we  do  with  that?

So  this  parameterization  technique doesn't  seem  to  be  the  best  way

to  approach  the  problem.

Scott,  I  know  we  have  to  do some  experimentation,

but  how  are  we  going  to  approach  this in  today's  analysis?

-So  that's  what  we're  going  to  do.

So we're  going  to  use  the  entire  shape,

our  response  in  this  case is  going  to  be  that  curve.

So  we're  not  going  to  try  to  co-optimize all  those  different  parameters

that  you  talked  about.

We  could  co  optimize  two,  three, four  different  parameters,

but  instead  we're  going  to  use that  entire  curve  as  our  response.

We're  going  to  use  all  the  data and  then  our  target

is  going  to  be  some  hypothetical  curve that  we  want  to  achieve.

So once  again, we're  not  going  to  try  to  target

all  the  different  parameters in  that  curve,

we're  going  to  try  to  match  the  shapes.

So  we  want  to  have  our  experimental  shape match  the  shape  of  our  target.

And  so  that's  how  we're  going  to  get started  with  the  analysis  today

and  we'll  take  you  through the  workflow  of  how  we  would  do  that.

So  let  me  go  and  get  into  JMP.

Oops,  there  we  go.

So  we  first  see  here is  the  DOE  that  we  ran.

So  we  ran  a  definitive  screening  design with  those  six  factors,

although  you  could  use  any  design that  you  wanted.

And  we've  got  18  experiments  in  this  case,

so here's  all  the  factors and  the  factor  settings  that  we  used.

-That  looks  pretty  standard  to  me,  Scott, for  the  DOE  that  I've  run  in  the  past.

But  you  don't  have  a  response  column.

-W ell,  that's  one  of  the  unique  things about  the  response  curve  analysis  is

in  some  cases  you  set  it  up  a  little  bit differently  and  how  you  do  the  analysis.

So  we  don't  have  a  response  column

and  we're  not  going  to  optimize just  a  single  value.

Instead,  our  responses are  in  this  other  table.

So  in  this  case, we've  got  a  very  tall  data  set

with  the  x- axis  is  our  size and  the  Y  value  is  our  percent  per  micron

and  this  is  what  we're  going  to  plot and  optimize.

But  we  do  need to  get  our  DOE  factors  in  there.

So  to  do  that, we  just  took  a  little  bit  of  a  shortcut

and  we  did  a  virtual  join between  these  two  tables.

So  in  our  design  here, our  run  number  is  the  link  ID.

And  then  we've  got  the  run  number  here and  this  is  the  link  reference,

and  this  lets  us  bring  in all  of  those  DOE  factors.

So  these  are  all  here  in  the  table, but  they're  just  virtually  joined

and  that  helps  us  keep our  response  table  nice  and  clean.

So  if  there's  any  modifications, we  don't  have  to  worry  about  copying

and  pasting or  adjusting  all  those  DOE  factors.

So that's  how  we  set  up  our  table,

we've  got  our  DOE  factors  in  this  table and  our  DOE  responses  occurs  in  this.

And  as  you  can  see, we've  got  all  of  our  18  runs  here.

And  before  we  start  the  analysis, let's  take  a  look  at  those  curves.

So  I  just  plotted  all  those  curves in  Graph  Builder,

and  so  we've  got  our  target  curve  here.

So  this  is  a  hypothetical  target  curve that  we  want  to  achieve,

it's  going  to  be  experiment  number  zero.

And  then  we've  got  experiments one  through  18

and  the  response  curves  for  each  of  those.

-So  you've  run  18  experiments and  not  a  single  one  of  those

looks  exactly  like  that  target.

What  do  we  do  with  that?

-That's  a  good  observation.

And  in  this  case,  what  we  can  see are  some  different  features  between  these,

so  definitely  some  are  more  broad.

I  like  how  you  called  it, that  haystack  here.

Some  are  more  narrow, maybe  with  smaller  shoulders  here.

We  do  see  that  the  peak  shifts a  little  bit  in  some  of  these,

here's  the  peak, it's  shifting  left  and  right.

And  so  hopefully  we  can  find some settings  and  those  factors

that  will  use  the  best  of  all of  these  give  us  something  that's  narrow

without  a  shoulder  or  bimodal  peak.

But  to  do  that, we  need  to  go

into  the  Functional  Data  Explorer.

This  is  a  traditional  DOE, we  would  go  up  to  analyze

and  we  would  go  to  fit  model,  potentially.

In  this  case, we're  going  to  go  down  here

to  specialized  modeling and  go  to  Functional  Data  Explorer.

And  so  when  we  launch  this, we  need  to  add  our  Y  values,

which  were  the  percent  per  micron.

The  X  values  was  our  micron  size.

We  need  to  identify each  of  those  functions

with  the  run  number.

And  then  we're  going  to  add all  those  DOE  factors

as  supplementary  information.

So  I'm  just  going  to  take all  of  my  DOE  factors

and  add  them  as  supplementary  information.

Now  we'll  click  okay.

So  when  you  launch the  Functional  Data  Explorer,

this  is  what  you  get  first.

And  this  is  just  a  data  processing  window.

And  what  we're  doing is  just  taking  a  quick  look  at

all  of  our  data.

And  so  in  this  initial  data  plot, we  just  have  all  of  our  curves  overlaid,

and  you  can  see our  green  target  curve  hiding  in  there.

So  this  just  shows  us how  all  of  our  data  are  lining  up.

Over  here  on  the  right, we  have  a  different  set  of  functions

to  help  clean  up  the  data,  process  it.

And  one  of  the  really  nice  things about  this  platform

is  you  don't  have  to  do that  data  processing  in  the  data  table.

So  if  you  needed  to  remove  zeros or  do  some  sort  of  adjustment  here,

standardized  the  range,  things  like  that,

you  can  do  all  of  that  over  here in  the  Clean up.

In  our  case,  our  data  is  pretty  clean,

so  we  don't  need  to  do any  data  processing.

But  what  we  do  need  to  do is  take  this  green  curve,

our  target  curve,  out  of  the  analysis.

So  this  is  the  target, this  is  what  we're  going  to  try  to  match.

And  so  we  don't  want  it to  be  part  of  the  modeling  analysis.

So  to  take  that  curve  out, we  go  over  here  to  the  target  function

and  we  click  load.

And  I'm  going  to  select  that  zero  curve, click  okay.

And  now  it's  gone.

So  now  we're  not  going  to  include  that in  our  models.

And  so  we  can  scroll  down  here and  just  see  how  each

of  our  individual  experiments  are  plotted.

So  now  that  our  data  is  nice and  cleaned  up,

we  can  go  on  to  the  analysis.

So  to  do  the  modeling, we  go  up  to  the  red  triangle

and  there  are  several  different  models that  we  can  choose.

And  in  a  typical  workflow,

at  the  beginning,  you  might  not  know which  is  the  best  model  to  use,

whether  you're  going  to  use  a B-spline or  a  P-spline  or  something  else.

In  this  case,  in  the  interest  of  time, we've  done  all  of  that  already.

And  we  know  that  the  P-spline gives  us  a  pretty  good  model.

So  we're  going  to  go  ahead and  fit  that  model.

So  I  select  P-spline and  now  JMP  is  creating  the  models.

And  what  we'll  see  is,

the  first  thing  we'll  is  something  similar to  that  initial  data  window  over  here.

So  all  of  our  curves are  still  plotted  and  overlaid.

But  now  we've  got  this  red  line and  this  red  line  is  representing  the  mean

so the mean curve of  all  of  those  different  curves.

And  so  we  can  also  scroll  down  below

and  we  see  each of  our  individual  experiments

also  with  a  line  of  fit.

And  this  is  the  first  indication that  you  can  get  about

how  well  this  model  is  fitting.

So  if  you're  getting  all  these  red  lines overlaying  your  experimental  data,

then  you're  probably  on  the  right  track.

If  there  was  a  lot  of  deviation

then  you  might  consider  doing a  different  model.

Other  thing  you'll  notice  over  here is  there's  different  fitting  functions

that  the  spline  model  is  using.

In  this  case,  there  were  two  that  JMPs that  are  pretty  good.

So  this  linear  model and  the  step  function  model

and  by  default  all  the  analysis  down  below

is  going  to  use  the  model that  had  the  lowest  BIC  value.

So  in  this  case,  all  the  analysis is  using  this  linear  model.

But  if  you  wanted  to  use  a  different  one you  just  select  it

and  I  don't  know  if  you  can  see  it  easily, but  this  one's  highlighted  now

or  you  go  to  the  linear or  you  can  just  click  on  the  background

and  it'll  go  to  the  default.

And  so  that's  the  modeling  side  of  it.

But  we  need  to  check how  well  this  model  is  fitting.

And  so  to  do  that,  we  just  go  down  here to  the  window  that  has  a  functional  PCA.

So  this  is  the  functional principle  component  analysis.

This  looks  a  little  complicated, but  what  we  want  to  do

is  really  start  to  take  a  look at  how  well  this  model  has  been  created.

And  so  what  we  want  to  do is  look  at  this  mean  curve  here.

So  this  is  the  same  mean  curve that  was  calculated  in  the  section  above.

And  what  JMP  has  done  is  said, we're  going  to  start  with  this  mean  curve

and  then  we're  going  to  add  a  shape.

So  we're  going  to  add  this  function or  some  portion,

either  positive or  negative  portion  of  this  curve

to  this  mean  curve.

And  you  can  see  over  here how  much  of  the  variance

you  can  explain  with  that  one  curve.

So  in  that  case, if  we  just  had  our  mean  curve

in  our  first  shape,

we  would  explain  about  50% of  the  variance.

By  adding  a  second  function, now  we're  explaining  nearly  79%,

3rd  function  gets  us  up  to  88%.

And  so  you  can  see  how  much of  that  variation  we  can  explain

by  adding  more  and  more  shapes.

And  depending  on  the  type of  curve  you  have,

you  might  have  only  one  function or  you  might  have  dozens  of  functions

depending  on  what  that  curve  looks  like.

So  this  is  it  looks  like  we  can  explain a  lot  of  the  variance  here.

It  takes  us  about  nine functions  to  get  up  there.

But  now  we  want  to  see how  well  those  combinations

of  all  those  shapes  with  the  mean  function or  with  the  mean  curve,

how  those  are  represented.

How  representative  they  are of  our  experimental  data.

So  to  do  that, we're  going  to  go  down  to  the  score  plot,

and I'm  going  to  make  this just  a  little  bit  smaller.

And  we're  going  to  look  at  the  score  plot and  this  FPC  profiler.

So  the  FPC  profiler

is  a  way  to  show  the  combination of  all  those  different  shapes.

So  we  really  just  want  to  pay  attention to  this  top  left  part  of  the  grid.

So  this  is  our  experiment based  on  the  combination  of  the  mean  curve

with  all  those  different  shapes.

And  right  now,  all  of  the  FPCs, since  they're  set  to  zero,

we  just  get  that  mean  curve.

But  if  I  start  adding  that  first  FPC, if  I  make  it  more  positive,

I'm  adding  that  shape,

now  I  can  see how  my  modeled  shape  is  changing,

and  if  I  go  lower, I  can  see  how  it's  changing.

So  by  adding  and  subtracting each  of  these  different  shapes,

I  can  recreate  all  of  the  different  curves

or  get  close to  all  those  different  curves.

So  this  might  take  a  little  while to  do  manually,

but  there's  a  nice  little  shortcut.

So  what  I  like  to  do is  go  into  this  score  plot,

and  let's  say  I  want  to  see experiment  number  six

so  I  can  hover  over  six,

and  then  I'm  going  to  pin  that  here, pull  it  over.

And  so  there  are  nine  different  functions, but  we're  only  going  to  see  two  at  a  time.

And  I  can  see  that  component  one  is  0.08

and  component  two  is  minus  0.03 .

So  I  can  take  this  to  0.08 , and  I  can  take  this  to  minus  0.03 .

And  I'm  starting  to  reproduce  this  curve, but  I  would  need  to  adjust  all  of  them.

And  so  there's  a  shortcut  to  do  that by  just  clicking  on  this.

So  by  clicking  on  six, all  of  the  different  FPC  components

are  set  to  the  best  representative  model.

And  we  can  look  at  these  two  shapes and  see  how  close  they  are.

In  this  case,  they  look  pretty  good.

Maybe  there's  not  as  much  definition, and  this  is  not  very  straight,

but  it  looks  pretty  good.

And  so  we  can  go  over  to  another  curve like  number  seven,

we'll  click  on  that  one and  see  how  it  changes.

Now  it's  not  looking  quite  as  good, and  we  can  go  to  eight.

And  this  is  what  I  really  like about  this  platform,

is  it  lets  you  explore  the  data.

So  it's  Functional D ata  Explorer,

we're  just  seeing how  well  this  model  fits,

and  we're  doing  it  fairly  visually.

And right  here,  if  we're  really  interested in  that  understanding  the  bimodal  nature

we're  not  getting that  resolution  with  here.

So  this  is  telling  us maybe  this  isn't  the  best  model.

Maybe  there's  a  better  one  out  there that  we  can  look  at.

So  if  we  go  up  back  to  the  top,

the  linear  model  was  selected  initially because  it  had  the  minimum  BIC,

but  maybe  we  want  to  use  a  step  function so  I  can  click  on  the  step  function.

And  now  all  those  FPC  curves have  been  recalculated.

And  the  first  thing  we  notice  is,

we're  getting  a  lot  more  explanation of  the  variance  here.

So  we  don't  necessarily need  all  of  these  curves,

I  can  just  take  this  slider.

Maybe  we  just  want  to  look  at  six  curves and  explain  99.7%  the  variance.

And  so  it's  simplifying  the  model  a  bit.

So  now  we  can  go  down  here and  take  another  look

and  spot  check  those  curves.

So  I  can  hover  over  six  again, pin  it  here.

This  is  the  curve that  we'll  be  looking  at.

And  what  I  want  to  do, I'll  just  make  this  a  little  bit  bigger.

And  so  when  I  click  on  six, okay  so  what  do  you  think,  Jerry?

What do you  think  this  one is  looking  a  little  bit  better?

-That's  much  better  reproduction of  your  experimental  day?

Yeah,  I  like  that.

-Good. Yeah,  I  think  this  is  looking  better.

So  we  can  go  to  seven,

and  that  one's  looking a  lot  better  as  well.

And  you  don't  need  to  select  them  all,

but  it's  good  to  check  a  few  of  them so  we  can  go  look  at  eight.

Yeah,  so  now  we're  getting a  lot  better  resolution  here

on  the  bimodal  nature  of  it.

All  right,  I  think  this  is  telling  us  that this  model  is  pretty  good.

-Yeah,  so  what  do  we  do  now?

That's  great  that  you  can  reproduce the  experimental  results,

but  how  do  you  get  to  the  optimal?

-Yeah,  I  guess  at  this  stage, it's  still  a  little  bit  abstract.

So  we've  got  all  these  different  shapes that  we're  combining  in  different  ways

to  reproduce  all  of  our  curves, but  we  haven't  done  what  we  set  out  to  do

which  was  relate  those  shapes to  our  DOE  factors.

So  that's  what  we're  going  to  do  next.

We're  going  to  go  back  up  to  the  model

and  we're  going  to  select functional  DOE  analysis.

And  when  we  do  that,  now  we're  getting  a  profiler

that  might  look  a  little  bit  more  familiar if  you're  used  to  doing  traditional  DEO.

So  once  again, the  response  curve  that  we  have  is  here.

And  so  we  see our  percent  per  micron  on  the  Y

and  the  micron  size or  the  particle  size  on  the  X.

But  now  instead  of  having  those  FPCs

in  those  shapes, now  we  have  our  DOE  factors,

so  we've  got  our  agitation  speed, our  flow  rate,  media  loading,  et  cetera.

Now  I  can  move  that  agitation  speed and  I  can  see  how  it's  relating  to

or  how  it's  influencing  the  curve.

And  I  can  see  by  the  slope  of  these  lines

whether  or  not  something is  important  or  not.

So  changing  that  one doesn't  really  change  the  shape.

So  flow  rate  doesn't  matter  a  whole  lot, but  temperature  certainly

makes  it  more  broad or  makes  it  more  narrow.

And  so  what  we  can  do because  we  loaded  that  target  curve,

just  like  in  a  standard  deal, we  can  go  to  our  red  triangle

and  we  can  go  to  maximize  desirability.

So  typically, this  would  look  at  a  parameter

if  you  were  doing  a  traditional  DOE.

But  in  this  case, it's  going  to  try  to  find  the  settings

that  match  that  target  curve that  we  loaded  earlier.

So  when  I  click  that,  and  there  we  go.

It  looks  like  there  are  some  settings  here that  get  us  a  curve  that's  fairly  narrow,

hitting  the  peak  that  we  wanted and  doesn't  have  any  of  those  features

that  we're  trying  to  avoid.

-Very  cool.

So  are  we  done?

We've  got  the  settings  that  we  need, we  just  throw  those

over  the  fence  manufacturing and  we're  done.

-Well,  that's  one  way  to  doe  it,  Jerry.

I  don't  know  if  folks  in  manufacturing that  I  worked  with  before

might  not  like  that.

We  probably  want  because  these  settings were  set  at,

the  settings  are  not  part  of  our  design.

So  this  one  is  in  the  center,

this  one's  not  at  an  edge  or  the  center.

So  we  probably  want  to  run some  confirmation  runs  here,

maybe  see  some  sensitivities and  make  sure  that,,

we've  got  some  robustness around  these  settings.

-Very  cool.

Okay,  all  right.

-Let's  get  back and  I  think  we  can  sum  up.

-Yeah. So,  Scott,  that  was  great,

thank  you  for  that  presentation.

So  in  summary,  what  we've  tried  to  do,  is  demonstrate  how  to  perform  a  DOE

using  these  particle  size  density  curves.

The  curves  themselves  as  the  response rather  than  parameterizing  the  PSDs

with  summary  statistics  like  median, standard  deviation,  et  cetera.

We  were  then  able  to  optimize our  factor  input  settings  to  the  process

at  least  at  the  pilot  scale  to  find an  optimal  curve  shape  that  was  very  close

to  our  desired  particle  size  distribution.

Along  with  the  way  we  discovered how  some  of  those  parameters,

agitation  speed  and  so  forth affect  the  particle  size  distribution,

leading  to  multiple  peaks or  leading  to  broad  peaks

or  whatever  that  might  be.

So  we  have  an  understanding  about  that, and  we  have  a  model.

So  bringing  this  all  back to  our  original  scenario,

R& D  took  the  results  back to  manufacturing,

where  confirmation  runs  were  attempted.

Scale- up  perhaps wasn't  completely  successful.

That's  typical  of  scale- ups, sometimes  the  pilot  runs

don't  map  directly  to  manufacturing.

But  we  do  have  this  model  now that  gives  us  an  indication

of  which  of  these  knobs  to  turn  to  adjust if  we  do  have  a  shoulder  on  that  peak

or  something  like  that.

So  we  were  able to  go  back  to  manufacturing,

give  them  the  assistance that  they  needed  to  get  that  in

so  that  they  could  increase their  throughput  and  everyone  was  happy.

[crosstalk 00:26:18] That  concludes  our  paper.

Scott,  thanks  for  all  the  hard  work.

-Yeah,  well,  it  was  great  working with  you  on  this,  Jerry.

-Yeah, likewise.

Scott  has  been  kind  enough  to  save the  modeling  script  in  the  data  table,

which  we're  going  to  attach to  this  presentation.

If  you've  got  any  questions about  the  video

or  any  of  the  techniques  that  we  did, please  post  your  comments  below  the  video,

there'll  be  a  space  for  you  to  do  that, we'd  be  happy  to  get  back  with  you.

Thank  you  for  joining  us.

-Yap,  thanks.

Comments
MxAdn

Nice presentation on FDE, and I appreciate that the JMP files required to carry out the analysis are included.  
I have a just a little bit of experience with FDE in JMP, so I gave it a try with the files.  In my work, I usually choose P-splines with Model controls, and then pay attention to the number of knots in order to try to avoid overfitting of data.  Data quality of this data set is much better than what I typically see. 

With this data set, JMP recommends quadratic, 51 knots and 5 eigenfunctions.  On trying to reduce knots, the next allowed model is 26 knots and 3 eigenfunctions.  Going the opposite direction gives 76 knots and 2 eigenfunctions.  

The tuned solutions given by the FDOE Profiler seem to vary quite a bit on the choice of the P-spline model.  I was not able to reproduce the FDOE profiler result presented by the JMP system engineers with alternative P-spline models.  It seems to me that 51 knots with quadratic should be better 151 knots with step functions!  

Also, the Generalized Regression is done on a normal distribution.  The X axis is on a log scale.  Should alternative distributions be in scope for this problem?  

Probably I can benefit from some discussion on this!  When I have more questions than answers, that indicates a good learning opportunity.  

Hi @MxAdn

 

Thanks for your comments and questions. When @JerryFish and I put together this data set and presentation, our emphasis was on the workflow and how someone with response curves might approach optimization through DoE. We also wanted to provide a new data set with a type of response curve that might be found in various applications.

 

You bring up a very good question about why the P-spline model with more knots and a step-wise function appears better at reproducing the experimental curves than polynomial functions with fewer knots. This was a question that Jerry and I had while putting this data set together. We do not have a good explanation for this, but I am going to follow-up with some FDE experts at JMP and will post a response when we get one. One possibility is that this is a simulated data set and the model might be influenced by the functions we used to create the simulated curves (this is also why we get pretty nice looking models!). Our overall goal was to show how you can iterate through the various tuning parameters (various splines, knots, and functions) to find the best model.

 

You bring up another good question regarding the distribution on the Generalized Regression analysis of the FPCs. For the purpose of this demonstration, we went with the default Gen Reg parameters. I am not sure how to interpret the different distribution types when it comes to Gen Reg on the FPCs. This is another topic we can look into. Ultimately, in any DoE we are going to validate our model with additional experiments and if this was a real scenario, we might select a few factor settings to test the model. Then feed those results back into our DoE and see if they support the model or suggest there might be another. 

Phil_Kay

Very nice presentation @scott_allen and @JerryFish .

 

@MxAdn - You bring up a good question about the distribution of the response that you are modelling. What you need to know is that with FDOE, the response(s) that you are modelling is the score for the functional principal component(s). So I don't think that the X-scale of the functional response is really relevant to the choice of distribution in Gen Reg for the FDOE model.

 

I hope that helps.

Phil

tbidwell

@scott_allen and @JerryFish ,

 

If I have a DOE with let's say 2 different functional curves (e.g., one is an analytical measure like you've show and another is a property measured over time), I assume I'd fit an FDE model to each curve separately and get the Functional DOE profilers for each one.   Do you think there is a way to put the two Functional DOE profilers together?

 

I'd like to do that because they each share the same DOE variables.  Then I'd like to be able to optimize the two curves at the same time.

 

Maybe a simpler case would be if I have one functional curve and one "traditional Y" like (Viscosity) for each DOE run.  Is there a way to get a profiler with the predicted curves for both in them as a function of the DOE variables?

@tbidwell 

 

This question generated some discussion between me, @JerryFish, and @Bill_Worley . We weren't quite sure how it would work to have a profiler with a functional response and traditional response, but the short answer is that it looks like works. To test this, we simulated the responses for a new Y variable in the original design. So now we have two responses: the original functional response and the new Y response.

 

Prediction Expressions

To make the combination profiler, we used Fit Model to generate an ordinary least squares model for Y and then saved the prediction expression to the DoE table. In the functional data table, we saved the prediction expression from the functional DoE results to the data table (this provides a prediction for Y as a function of X and the DoE factors).

 

Combination Profilers

To make the combination profiler we added the prediction expression for the new Y variable into the data table with the particle size distribution functional data. To do this, we just copied over the prediction expression formula from the DoE data table and pasted into the functional data table. Since the functional data table is virtually linked to the DoE data table, we were able to easily update the column references in the prediction expression to the linked DoE factor table.

 

With both prediction expressions in the same data table, we launched the Profiler and loaded both prediction expressions. This appears to work and we get a profiler that has the functional response as well as the traditional Y response:

 

scott_allen_1-1666283270953.png

 

 

I have edited this post and added the modified data tables.

 

Multiple functional responses?

The next question is can we do this with two functional responses? I am not sure, but I am going to simulate a second functional response and see if we can!

 

This analysis was done with JMP 17.0