Choose Language Hide Translation Bar

CMP Two-Polish Table Optimization for Max Tool Output - (2023-US-PO-1446)

Chemical mechanical planarization (CMP) is a process used in the semiconductor industry in which a layer of the chip is planarized or flattened in preparation for putting another layer on top of it. The chemical part consists of chemical reactions occuring between the liquid polishing slurry and the top layer of the substance being polished, which is often softened in the process. The mechanical part occurs after the chemical softening, removing the top layer and exposing the next atomic layer for chemical reaction. The polishing is crucial to ensure that the subsequent layer doesn't have electrical opens or shorts due to its topography on the preceding layer. Many CMP processes consist of bulk polish on one table and then a final polish on a second table. This two-table process helps achieve the maximum possible output from a CMP tool if the two tables are properly balanced for bulk and final polish times. 



 

 

I 'm  still  seeing  your  Polish  Table  2  Throughput  Optimization  slide  too ,

by  the  way .

I 'm  not  sure  if  it 's  just  really  laggy   or  what 's  going  on  there .

You 're  not  seeing  the  title  slide ?

Now  I 'm  seeing  the  title  slide .

I 'm  going  to  go  ahead  and  unmute  myself .

Yeah ,  I  don 't  know  if  there 's  anything we  do  about  that  either .

That 's  got  to  be  like  a  Zoom or  potentially  an  Internet  thing .

Well ,  let 's  go  ahead  and  do  this

and  then  if  I  see that  things  look  really  janky ,

I  might  be  messaging  you .

But  I  think  for  the  most  part ,

if  you  just  maybe  take   a  quick  pause  between  slides ,

we 'll  be  okay .

I 'll  go  ahead  and  mute ,

and  then  you  can  go  ahead   and  get  started ,  Tom .

I 'm  really  glad  to  be  here  today   and  presenting  to  you .

I 'll  be  discussing  Chemical Mechanical  Planarization  or  CMP .

This  is  an  integral  step in  the  semiconductor  manufacturing  process

that  I  will  give  a  little  bit   of  background  on

as  I  move  through  my  slides .

Let 's  go  to  the  first  slide  of  the  presentation .

Quick  overview  of  CMP .

Once  again ,  that  stands  for   Chemical  Mechanical  Planarization ,

and  that  describes  the  two  processes  involved

with  planarizing  certain  layers   of  circuits  in  the  semiconductor  field .

It 's  crucial  to  planarize  each  layer  of  circuits

so  that  the  one  that  goes on  top  of  the  preceding  layer

will  not  have  any  shorts or  opens   or  short  circuits .

The  chemical  part  of  chemical  mechanical  planarization

is  when  we  introduce  a  liquid

to  react  with  the  top  atomic  layer of  the  material  that  we  are  planarizing .

That  reaction  softens  the  layer ,

whether  it 's  a  metal  or  an  oxide , whatever  the  case  may  be ,

we  choose  that  chemical  so  that   it  will  soften  the  top  atomic  layer .

Then  the  mechanical  part  comes

with  the  abrasives  that  are  carefully selected  for  that  polishing  slurry .

These  abrasives  then  remove that  softened  top  layer ,

exposing  the  next  atomic  layer   to  be  softened  by  the  chemical  reaction .

This  process  is  repeated atomic  layer  after  atomic  layer

until  the  desired  level  of  planarization is  reached .

Like  I  was  saying ,

this  planarization  is  crucial  to  do in  between  each  layer  of  circuitry

to  ensure  that  we  have   solid  electrical  isolation

without  any  shorts  or  opens .

This  process  enables  us  to  pile   many  layers  on  top  of  one  another

and  reduce  the  footprint of  whatever  chip  we 're  making .

When  we  do  the  CMP  processes ,

many  of  them  consist  of  a  two  polish  table process  to  enable  maximum  throughput .

Typically ,  the  first  table   consists  of  a  bulk  polish

where  most  of  a  substance   is  planarized  and  removed ,

and  then  a  final  polish   or  second  polish  table

where  we  do  the  final  touch -ups

and  ensure  that  we  have  good electrical  isolation  between  the  circuits .

Each  polish  table  has  a  polish  pad

where  we  press  the  wafer   containing  the  chips  against ,

and  this  enables the  polish  process  to  occur

and  it  enables  the  slurry  to  be  pressed against  the  wafer  that  contains  the  chips .

The  polish  pad ,  unfortunately ,

it  wears  down  as  each  wafer   is  polished  on  it ,

which  inhibits  the  transport  of  this chemical  slurry  to  the  wafer  surface .

Typically ,  as  the  polish  pad  wears ,   we  see  a  reduction  in  polish  rate ,

which  causes  longer and  longer  polish  times .

If  we  don 't  take   that  wear  factor  into  account

and  we 're  setting  up the  two -table  process ,

then  we  will  have  one  polish  table   begin  to  predominate ,

and  it  can  actually  develop such  a  long  polish  time

that  it  will  become  a  limiting  factor in  our  throughput .

For  my  presentation  today ,

I 'm  explaining  a  process  whereby   we  can  take  into  account  the  pad  wear  rate

and  still  ensure  that  we  have   optimized  throughput .

Approach  and  the  results .

I  gathered  and  analyzed  data  in  JMP

to  show  the  polish  time   versus  polish  pad  life  relationship

for  tables  1  and  2   for  a  CMP  two -table  process

at  one  of  Texas  Instruments Fabrication  Facilities .

I  then  used  JMP  scripting  language ,

the  built -in  integration  function to  calculate  the  area

under  the  polish  time   versus  pad  life  curve  for  both  tables .

Then ,  finally ,   I  used  the  system  of  equations

to  solve  for  a  Table  1 polish  time  starting  point

that  enabled  equal  polish  time   versus  polish  pad  life  integrated  areas

for  tables  1  and  2 .

This  ensured  that  we  had  achieved a  maximized  tool  output

for  the  CMP  process .

Conclusions  are  that  we  can  use  JMP

to  develop ,  first  of  all ,  polish  time   versus  polish  pad  life  curves .

Then ,  second ,  we  can  use  JMP   scripting  languages ,  built -in  integrator .

We  can  use  this  combination

as  an  efficient  way  to  optimize   CMP  two  table  processes  for  throughput .

Let 's  go  to  the  next  slide .

This  curve  that  we 're  looking  at  is what  we  get  when  we  plot  the  polish  time

on  the  first  table  versus the  polish  pad  life  of  that  first  table .

As  we  can  see , the  polish  time  as  the  pad  wears

and  we  polish  more  and  more  wafers   on  this  polish  pad ,

we  start  to  see  polish  times   increase  quite  dramatically .

Using  JMP ,  we  can  fit  a  line  to  this  data

and  develop  a  simple  Y  equals  Mx  plus  b   slope  intercept  function  to  fit  this  data .

I 'm  using  a  first  order  here ,

but  if  the  data  justified  it , we  could  use  a  second  or  third  order .

But  in  this  case , a  first  order  is  sufficient .

We  developed  the  equation for  polish  time  versus  pad  count ,

and  then  we  use  the  JSL  integrator to  integrate  the  area  under  this  line .

That 's  for  the  Polish  Table  1 .

Then  I 'll  talk  a  little  bit  more  about the  equations  needed  to  solve

for  the  optimal  settings .

But  first  of  all , we 'll  jump  to  Polish  Table  2 .

Polish  Table  2  is  the  final , it 's  the  finishing  table

where  we  finish  removing   whatever  the  bulk  material  is

we 're  using  to  isolate  or form  these  circuits ,  electrical  circuits .

The  same  thing  for  Polish  Table  2 ,

we  developed  the  curve   from  historical  data

of  polish  time  in  seconds   versus  the  polish  pad  life .

Typically ,  for  the  polishing  plat ,   for  the  final  plat  or  final  table ,

the  trend  with  polish  pad  life   is  not  as  pronounced  as  it  is

for  the  bulk  for  Table  1 .

Before  discussing  a  little  bit  more about  these  equations ,

just  to  make  sure  everyone 's   on  the  same  page ,

I  wanted  to  show  what  physically this  looks  like  on  the  wafer  surface

for  doing  this  two -table  polish  process .

Before  we  start  to  polish  anything ,

we  have  a  wafer   with  pattern  circuits  on  it .

Then ,  on  top  of  that  wafer ,

we 've  deposited  a  large  amount , relatively  speaking ,

of  whether  it 's  isolator  or electrically  conductive  material ,

whatever  is  needed  to  form the  circuits  that  we 've  etched  here .

After  Polish  Table  1 , also  known  as  the  bulk  polish  table ,

we 've  removed  a  significant  amount   of  this  bulk  material

and  we 've  planarized  it , made  it  very  flat .

Then  after  Polish  Table  2 ,

which  is  also  called   the  clear  or  the  finish  table ,

we 've  removed  all  of  this  bulk  material

except  where  it 's  actually  needed   in  the  pattern  circuits .

Physically ,  that 's  what 's  happening in  this  two  polish  table  process .

Let 's  go  back  quickly  to  the  equations .

We  integrate  the  area  under  Table  1 ,   which  is  on  the  preceding  slide .

That 's  the  bulk  polish  time   versus  Table  1  polish  pad  count .

Then  we  also  integrate   the  area  under  this  curve ,

which  is  the  final  or  finish  table .

Same  thing ,  integrate  the  area  under the  polish  time  versus  pad  count  line .

Then  we  solve  the  linear  system of  equations  to  find  which  Y -intercept ,

in  this  case ,  it 's  b1 , and  that 's  for  the  Table  1 .

We  solve  for  that  b1  that  will  create an  equal  integrated  area

under  the  Table  1  and  the  Table  2  curves .

Just  as  a  reminder ,

the  JMP  scripting  language has  a  handy  function

for  enabling  quick  integration

and  determining  the  areas   under  these  two  curves .

Then  based  on  a  few  other  properties

that  we  know  based  on  historical   or  baseline  analysis ,

then  we 're  able  to  set  up   a  system  of  equations

with  four  unknowns ,  four  equations ,

and  then  we  solve  for  that  intercept on  the  first  curve

that  enables  maximum  throughput in  equal  area  under  these  curves .

With  that ,

almost  the  entire  process   can  be  done  in  JMP ,

with  the  exception  of  solving a  system  of  equations

that  can  indirectly  be  done  in  JMP ,   or  you  can  write  a  script .

But  I 've  found  it  easier  just  to  solve the  system  of  equations  manually ,

but  it  could  easily  be  set  up   to  be  done  in  JMP  as  well .

When  you  finish  this  process ,

then  you 're  able  to  optimize   this  two -table  CMP  system

and  you  can  maximize  the  throughput

and  so  minimize  the  number   of  polish  tools  required ,

which  saves  a  lot  of  money   and  saves  a  lot  of  time .

That  is  the  end  of  my  presentation .

Thank  you .

Presenter