Choose Language Hide Translation Bar

Gauge R&R of X-ray Photoelectron Spectroscopy to Monitor a Coating Process - (2023-US-30MP-1450)

X-ray photoelectron spectroscopy (XPS) analyzes the surface chemistry of materials. It is also known as electron spectroscopy for chemical analysis (ESCA) and is commonly used to measure elemental composition/stoichiometry of thin film coatings in different industries. We have applied this technique to develop Atomic Layer Deposition (ALD) AlOx coating (of < 50 nm thick) processes by testing deposited film composition to identify the O/Al ratio.

 

Our pharmaceutical program customers questioned whether XPS is an appropriate metrology technique to detect process variation in the coating composition. This presentation demonstrates the adequacy of XPS by using Gauge R&R in JMP 17. We designed our testing experiments using measurement systems analysis (MSA) designs platform, and a fast replicate crossed model was used with six sample coupons on two different kinds of substrates (silicon coupons and active pharmaceutical ingredient [API] pellets). Each sample was split into four parts and all 24 (6 X 4) samples were measured independently by two different vendors blindly.

 

The data distribution was reviewed using a variety of methods: X-bar and R control chart, performed repeatability, reproducibility, part-to-part variation testing, calculated Gauge R&R (P/TV), P/PV, P/T in MSA Gauge R&R platform. Also, the evaluating the measurement process (EMP) platform was used to determine interclass correlation (ICC) and to identify if any interaction exists with either substrate type or vendor. Both MSA platforms confirmed that part variation is significantly higher than precision level, hence XPS is adequate to detect the variation in the process



 

 

Hello .

 

Good  morning ,  everyone . Good  evening ,  everyone .

I 'm  Sukti  Chatterjee .

Before  starting  my  presentation ,

I  would  like  to  introduce  myself   with  few  words .

I 'm  Sukti  Chatterjee   from  CTO  team  of  Applied  Materials .

It  is  advanced  technology  team , and  our  team  goal  is  to  develop  product

adjacent  to  the  semi  industry or  outside  the  semi  industry .

For  example , we  are  working  for  aerospace  industry ,

pharmaceutical  industry , or  industrial  coating .

This  example ,  present  example ,

we  are  taking from  the  pharmaceutical  industry .

My  topic  of  the  presentation  today.

Gauge  R&R  of  X -ray  photoelectron   spectroscopy  to  monitor  a  coating  process .

Agenda  of  my  talk  today.

Fi,rst,  we  will  talk  about  the  background and  problem  statement ,

then  we  will  discuss  about  the  operation definition  and  data  collection  plan .

Next ,  MSA  component  analysis .

Finally  we 'll  talk  about  the  plan for  MSA  component  improvement .

Let 's  start  with  the  background .

In  the  pharmaceutical  industry , in  therapeutic  windows ,  therapeutic  areas ,

there  are ,  for  example ,  antibiotic  drug , alcohol  addiction  or  cancer  patient ,

they  need  everyday  injection   because  drug  level  in  the  blood

is  certainly  increasing ,   spiking  in  the  blood ,

and  then  within  short  time ,   within  a  few  hours ,

it  is  going  beyond   the  therapeutic  window  limit .

That 's  why  they  need   everyday  injection  and  it  is  painful .

It  causes  some  side  effect ,

that 's  why  patient  skipping the  medication  or  stop  the  medications .

To  solve  this  problem ,

our  customer  needs  some  approach to  tailor  the  release  of  drug .

Our  team  developed  a  barrier  layer , aluminum  oxide  barrier  layer ,

that  forms  a  shell   around  the  pharmaceutical  particles .

Properties  of  this  barrier  layer

can  control  the  release of  the  drug  in  the  blood .

Even  it  is  possible  like  that ,

it  can  release  few  weeks   instead  of  few  hours .

Here ,  we  will  talk  about the  composition  analysis ,

and  what  is  the  noise  analysis of  this  composition  measurement ?

That  we  will  talk  here .

Our  problem  is  measurement of  AlOx  coating  composition .

Our  spec  limit ,   customer  spec  limit ,  is  O /Al  ratio

in  the  aluminum  oxide  film  is  1 .2 -2 .3 .

Our  objective  here  to  determine   the  XPS  method  if  it  is  adequate

to  differentiate  AlOx  process  variation .

We  will  determine  here ,   gauge  R&R  measurement  error

of  XPS  for  AlOx  composition  analysis .

X -ray  photoelectron  spectroscopy can  measure  quantitatively

atomic  percentage  of  composition .

It  can  measure  aluminum   and  oxygen  percentage .

XPS  actually  measure  the  kinetic  energy

of  photoelectrons  emitted   from  the  elements

and  it  counts  the  electrons .

Whenever  it  is  counting  the  electrons , it  can  count  the  presence  of  elements

and  also  it  counts   the  element  which  is  bond  to  it .

That 's  why  we  can  get  the  information

about  aluminum  and  oxygen in  the  aluminum  oxide  film .

Most  of  the  source  of  error  for  XPS , it  can  add  it  in  gauge  R&R .

It  can  reproducibility ,  it 's  coming from  the  calibration  electron  count .

It  can  add  repeatability   and  reproducibility  error .

Analysis  can  add  reproducibility  error .

We  will  talk  more  details this  one  in  the  next  slide .

In  our  operation  definition , we 'll  talk  about  the  different  steps

of  the  XPS  measurement   and  how  it  can  introduce

the  error  in  the  measurement  error  GRR , gauge  R&R  error .

Our  objective  measure  aluminum  oxide coating  composition ,

and  to  measure  it  in  XPS , first  we  need  to  do  baseline  correction .

It  is  automatic , and  then  we  need  to  go  to  the  calibration .

In  calibration ,  normally  applied  materials have  calibration  sample ,

especially  whenever  we  have  some

developed  technologies like  aluminum  oxide .

But  in  our  cases ,   we  are  coating  pharma  particles

and  our  process  window   is  totally  different

from  our  applied  materials  core  technology process  window  for  aluminum  oxide ,

because   coating  need  to  be  compatible   with  the  pharma  particles .

We  are  coating  this  particle , at  the  same  time ,

we  are  coating  also  silicon  wafer and  API  pallet

because  XPS  cannot  measure  particles .

It  needs  some  planar  substrate .

That 's  why  we  are  depositing on  silicon  wafer  and  API  pallet .

Since  we  don 't  have  calibration  sample , we  are  using  the  second  option

for  calibration   like  carbon  peak  calibration .

Left -hand  side  picture ,   you  can  see  carbon  peak  calibration

and  it  is  manually  need  to  do  it,

and  that 's  why  it  impact   on  the  reproducibility .

Then  after  calibration we  need  to  do  XPS  survey

or  high  resolution  scan to  get  the  spectra.

In  the  spectra , you  can  see oxygen  peak,  aluminum  peak .

Since  we  need  to  do  manual  calibration and  we  have  automatic  baseline  correction ,

this  can  impact  error   on  repeatability  and  reproducibility .

Next ,  we  need  to  do  analysis . Analysis  is  peak  fitting .

We  need  to  fit  this  peak   and  then  we  can  gauge .

From  peak  area ,  we  can  calculate the  oxygen  aluminum  percentage .

Since  it  is  semi  automatic , it  can  add  error  in  the  reproducibility .

By  XPS  measurement , we  are  calculating  O /Al  ratio

and  our  customer  spec  limit  is  1 .2 -2 .3 .

Next ,  we  will  talk  about the  cause  and  effect  diagram ,

MSA  cause  and  effect  diagram .

In  MSA  cause  and  effect  diagram , we  did  some  detailed  analysis,

and  we  found  several  one   it  can  impact  on  the  gauge  R&R .

We  highlighted  also  major  ones like  electron  counts ,

calibration  analysis , we  talked  in  the  earlier  slide .

Now  we 're  adding  another  one ,  it 's  sample  loading ,

how  it  is  added  error  in  the  gauge  R&R .

Sample  loading ,  we  need  to  do  it .   It 's  not  automatic ,  it  is  not  full  wafer .

We  are  doing  with  coupon  wafer , so  we  need  to  place  the  coupon .

If  it  is  location  a  little  bit  different or  angle  is  little  bit  different ,

then  it  can  impact  on  the  measurement .

This  is  impacting  on  reproducibility .

All  other  major  one  impact  we  already discussed  in  the  previous  slides .

Other  one  is  the  sample . It  depends  on  the  process .

For  this  presentation ,  it  is  out  of  scope .

We  will  talk  about  these  four   in  this  presentation .

Next ,  our  sample  collection  plan .

For  our  sample  collection ,   we  use  six  samples  for  MSA  analysis ,

and  for  these  six  samples   we  have  four  replicates .

Here  you  can  see  these  four  replicates .

We  measure  those  samples  in  two  sites .

Since  we  have  the  four  replicates , we  are  measuring  those  sequentially .

Is  it  possible   that  if  samples  are  degraded

then  sample  degradation  could  be  a  risk ?

We  will  talk  about  this  risk   later  on  more  details .

Our  expected  outcomes like  that  we  need  to  find  out  XPS  method

is  adequate  to  differentiate   process  variation .

Also , you  like  to  gauge  like  that

whenever  we  are  measuring  two  sites   that  have  similar  result .

Also , we  like  to  gauge  like  that  sample or  part  is  not  interacting  with  the  site .

Now  we  need  to  do  the  MSA  design .

In  MSA  design ,  we  are  using  substrate and  site  at  the  cost  factor .

This  is  the  site ,  this  is  the  part , and  we  have  also  two  different  substrate .

We  mentioned  it  before , API  palette  and  silicon  wafer .

S  numbers  are  silicon  wafer , A  numbers  are  API  palette .

We 'll  not  be  able  to  use  actually   completely  randomized  option

and  we  use  first  repeat .

For  first  repeat  option ,

here  we  are  not  changing   the  sample  replicate  number .

That  could  impact   on  sample  degradation  problem .

That 's  why  later  on  we  will  compare  first   and  fourth  replicate

to  check  this  sampling  risk .

For  this  MSA  analysis ,

we  sequentially  use  several  JMP applications  from  JMP  platform .

We  use  data  distribution  of  MSA  samples .

That  is  from  descriptive inferential  statistics  application .

It  is  from  distribution  fit  Y  by  X .

Then  we  check  the  data  variability using  control  chart  and  one -way  ANOVA .

Then  we  analyze  gauge  R&R  components .

It  is  from  the  variability  chart .

Then  we 'd  like  to  gauge  like   that  what  is  the  relation

with  process  capability  with  gauge  R&R .

That  we  can  find  out  like  that , interclass  correlation  versus  P /T  plot .

Next , we  did  the  root  cause  analysis to  plan  for  improving  the  GRR .

We  will  find  out what  is  the  GRR  major  error

and  how  we  can  find  out .

That  we  are  using  for  box  plot ,   density  ellipse ,

matched  pairs ,  and  fit  line

that  are  different  platform   of  JMP  platform .

Let 's  start  with  the  data  distribution .

We  developed  process  initially   at  the  two  spec  limit ,

upper  spec  limit  and  lower  spec  limit .

In  upper  spec  limit ,  we  have  two  samples , two  parts  and  four  replicates .

All  are  measured  two  sites ,

and  we  already  mentioned we  did  the  first  repeat .

Similarly ,  at  the  lower  spec  limit ,   also  we  have  four  parts ,

four  replicates  and  two  sites .

Since  we  did  the  process  development at  the  two  end  of  the  spec  limit ,

that 's  why  we  can  see   that  our  distribution  is  bimodal .

It's completely  bimodal  distribution .

Problem  of  bimodal  distribution , it  can  impact  on  the  GRR  components .

It  can  impact  on  P /TV  ratio ,

it  can  impact  on  P /PV  ratio and  misclassification .

Since  P /T  ratio  is  not  related  with ...

It  is  not  dependent  with  the  part , that  is  the  reason  P /T  ratio

it 's  not  impacting by  the  sample  distribution .

That 's  why  we  will  be  used in  our  following  slides .

Our  figure  of  merits   we  are  using  as  a  P /T  ratio .

For  misclassification  probabilities , there  is  five  probabilities .

Last  three ,  it  could  be  impacted by  the  sample  distribution  more ,

and  first  two  is  less  impacted .

To  minimize  the  risk ,  again ,

we  are  focusing  on  the  P /T  ratio as  a  figure  of  merit .

In  the  next  time ,   our  plan  to  do  MSA  analysis

using  uniform  sample  distribution .

Let 's  check  now  the  variability  of  data .

Here  we  can  see  that  we  use  I -MR  chart ,

individual  moving  range  chart , and  we  saw  that  many  data  points

are  outside  the  control  limit   in  the  upper  chart ,

and  in  the  lower  moving   range chart ,

we  saw  that  three  data  point   is  outside  the  control  limit ,

and  that  these  three  data  points ,   it  is  sudden  shift .

It  is  sudden  shift , it 's  not  staying  there ,  it  is  going  back .

It  means  it  is  the  type  II  shift

and  there  is  a  mixture   of  common  cause  variation

and  special  cause  variation   in  the  control  chart .

That 's  the  reason  here control  limits  are  meaningless .

We  need  to  subgrouping  with  special  cause

and  then  only  we  can  consider   the  control  limits .

Now  we  like  to  find  out what  are  the  special  cause .

First  we  will  check  if  part  variation could  be  a  special  cause .

We  did  it  using  the  one -way  ANOVA and  in  one -way  ANOVA ,

we  can  see there  is  a  variation  of  the  samples .

We  did  the  process  near  upper  spec  limit and  we  did  the  process  lower  spec  limit .

That 's  why  samples  are  different .

That  also  we  found  by  one -way  ANOVA , and  here  we  can  see  that

within  variation  is  very  small   compared  to  part  variation ,

and  also  by  analysis   of  variance  is  showing  like  that .

Here  our  hypothesis   is  all  parts  are  same ,

but  it  is  rejecting  the  hypothesis because  P -value  is  less  than  0 .05 .

It 's  telling  us   it  is  significantly  different .

That  means  part  variation is  a  special  cause ,

so  we  can  use  as  a  candidate for  subgrouping .

Again ,  similarly  we  check  with  the  site variation  if  it  is  a  special  cause  or  not .

We  considering  two  sites  measurement   near  upper  spec  limit

as  well  as  near  lower  spec  limit .

We  saw  that  here  our  hypothesis is  two  sites  are  measurement  similar,

and  we  found  that  its  P -value   is  higher  than  0 .05 .

For  upper  spec  limit ,

there  is  no  evidence   that  we  can  reject  the  hypothesis .

It  is  similar ,  on  the  other  hand ,   for  lower  specs  limit .

It  is  marginally  rejected   because  it  is  less  than  0 .05 .

For  site  variation ,   either  it  is  marginally  rejected

or  there  is  no  evidence  to  reject .

That 's  why  site  variation   is  not  a  good  candidate

and  part  variation  is   the  better  candidate .

What  we  did  next ,  we  make  our  control chart  again  with  phase  option  and  A  here ,

sampled  part  at  a  different  phase .

When  we  do  it ,  we  saw that  in  a  moving  range  chart ,

we  found  change  in  the  variation in  the  measurement  in  the  moving  range ,

and  that  calculated  the  control  limits for  the  bottom  chart  and  the  upper  chart .

Now  we  saw  that  all  the  points ,

all  the  measurement  points are  inside  the  control  limit .

These  is  the  variations  of  each  sample . It  is  the  repeatability .

When  we  consider  site  A  and  site  B ,

and  we  saw  also  site  B   has  also  repeatability .

But  compared  to  site  A  and  site  B , there  is  some  variation  of  repeatability .

That  is  called  reproducibility .

Now  we  calculate  the  gauge  R&R , all  the  components  in  the  next  slide ,

and  we 'll  find  out  what  is   the  dominating  error  in  gauge  R&R .

First , we  did  main  effect .

We  didn 't  consider  for  the  main  effect part  and  site  variation  interaction ,

so  only  the  main  effect .

Here ,  we  saw   the  repeatability ,  reproducibility .

Repeatability  is  22 % and  reproducibility  is  15 %.

I  already  mentioned  as  a  gauge  R&R , we  are  considering  P /T  ratio

because  our  sample   distribution  is  bimodal ,

and  we  saw  that  P /T  ratio  is  26 %.

It  is  passed ,  it  is  less  than  30 %.

It  is  marginally  passed , and  major  error  is  22 %  repeatability .

One  more  thing  I  should  mention  here , we  are  considering  P /T  ratio

but  P /TV  or  P /PV  ratio  is  very  close for  our  measurement  cases

because  our  sample  distribution  is  bimodal and  at  the  two  end  of  the  spec  limit .

That  is  the  reason  this  ratio  T   or  TV  are  very  close  or  PV  is  very  close .

That  is  the  reason  we  have  this  gauge  R&R .

This  figure  of  merits  is  very  close .

Also , I  should  mention  here  type  I  error alpha  and  type  II  error  beta .

Type  I  error ,  all  our  data  points   within  the  control  limit .

That 's  the  reason  our  type  I  error good  part  is  falsely  rejected .

It 's  very  small .  It  is  less  than  6 %.

On  the  other  hand ,   type  II  error ,  it  is  6 %,  it  is  failed .

It  is  more  than  10 %.

Why  type  II  error  is  higher ?

Our  repeatability  is  the  major  issue .

Whenever  we  are  measuring  the  samples , it  is  within  the  spec  limit .

But  it  is  possible  like  that  whenever a  customer  is  measuring  it .

It  could  be  beyond  the  spec  limit because  repeatability  is  high  here .

At  this  point ,   since  we  are  developing  the  product ,

we  are  in  the  initial feasibility  check  phase .

Customer  is  happy   with  this  beta  type  II  error ,

but  we  have  option .

If  we  can  improve  the  repeatability ,  then  it  can  improve  this  part  also .

On  the  other  hand ,  if  we  can  consider that  part  and  site  interaction ,

then  we  saw  that  part   and  site  interaction  is  6 %,

not  that  much ,

but  there  is  a  little  bit  interaction.

And  when  we  didn 't  consider the  interaction  in  the  main  effect  mode ,

then  this  interaction  is  added   in  the  repeatability .

That 's  why  we  found  that  whenever we  are  considering  the  crossed  effect ,

we  saw  repeatability   little  bit  decreasing

because  our  interaction  is  very  small , not  that  much  decreasing .

Since  this  interaction  is  very  small ,

our  figure  of  merits   are  not  changing  that  much .

It  is  changing  from  little  bit .

Now  from  here ,

we  know  that  our  dominating   error  is  repeatability .

Before  going  about   the  more  discussion  with  repeatability ,

first  another  thing   I  would  like  to  mention ,

process  capability  with  gauge  R&R .

Effect  of  gauge  R&R   on  the  process  capability .

Here ,  process  capability we  are  plotting  in  ICC  versus  P /T  plot .

ICC  is  the  part  variation   to  total  variation

and  P /T  is  the  six  sigma  gauge , and  USL  minus  LSL .

We  calculated  from  here  Cₚ , and  in  our  cases ,

in  our  process  current  condition ,   Cₚ  is  0 .93 .

It  is  less  than  one .

It  is  in  the  red  zone , and  we  need  to  go  Cₚ ...

For  a  good  process  capability , we  need  to  go  between  Cₚ  1 .33 -2 .

It  is  the  yellow  zone .

To  improve  this  Cₚ ,  what  we  need  to  do ?

In  this  part ,  this  is  the  process  part

and  in  this  direction ,   it  is  the  measurement  part .

Process  variability   or  part  variability  is  very  high .

For  our  measurement , we  saw  that  our  P /T  is  24 %.

If  we  would  like  to  increase ,   if  we  would  like  to  improve  the  P /T

from  24  to  suppose  15 %  or  10 %, then  we  have  to  improve  30 % -50 %,

and  within  that ,   our  repeatability  is  the  main  issue .

That  is  the  reason  we  need to  improve  the  repeatability .

Now  it  is  question .

If  we  need  to  improve  the  repeatability , do  we  need  to  change  our  measurement  tool ?

That  is  again  depending  on  the  ROI that  is  question  to  our  managing  level ,

or  we  can  address   the  repeatability  in  different  way .

That 's  why  we 'd  like  to  find  out  the  root cause  why  repeatability  is  higher .

Here  we  are  considering  variability  chart with  analysis  of  variance .

Here  we  can  see  that  we  plot   all  the  samples  variability  together

with  site  A  and  site  B  measurement .

You  can  see  that  suppose ,  for  a  sample  A0 ,

this  is  the  measurement  repeatability , and  it  is  changing .

This  repeatability  is  changing for  all  the  parts .

Also  repeatability  is  changing with  the  site  to  site

because  here  you  can  see   repeatability  is  0 .06  standard  deviation ,

but  in  these  cases  when  they  measure their  repeatability  is  0 .03 .

That  is  the  reason   this  repeatability  is  changing

with  part  to  part  also  site  to  site .

Whenever  it  is  changing   with  site  to  site ,

it 's  called  reproducibility .

Here  if  you  can  consider   the  analysis  of  variance ,

then  we  can  see  that  site   to  site  variation  is  much  smaller

than  within  variation .

This  is  the  repeatability , within  variation ,  and  site  to  site .

Site  to  site  variation ,   it  is  reproducibility ,  it 's  much  smaller .

Repeatability  again  from  here  also we  find  out  that  it  is  the  bigger  problem .

Now  in  the  next   to  find  out  the  root  cause ,

we  plotted  all  the  repeatability side  by  side  together ,

and  for  both  the  cases ,  USL , upper  spec  limit  and  lower  spec  limit ,

and  all  the  cases  we  found that  its  repeatability  is  different .

Next  we  like  to  correlate   or  find  out  any  relationship

if  it  is  present  site  A   and  site  B  measurement .

Ideally ,  site  A  measurement  will  equal to  site  B  measurement  should  be .

But  in  our  cases ,  we  did  some  linear  fit and  we  found  that  we  have  intercept

as  well  as  we  have  linear  fit  slope , it  is  not  one ,  it  is  not  zero .

Here  we  found   that  linear  slope  is  less  than  0 .4

and  intercept  is  higher  than  0 .9 .

Our  fitting  points  are  distributed  widely .

That 's  the  reason   our  R -squared  is  also  poor .

We  also  did  the  density  ellipse

and  density  ellipse  also  telling that  this  correlation  is  less  than  0 .5 .

If  they  have  a  very  good   correlation  relationship ,

then  it  should  be  0 .9 .

If  it  is  0 .6 ,  then  it  will  be   moderately  correlated .

But  in  our  cases ,  it 's  not  that .

That 's  why  we  know  that  site  A measurement  is  not  site  B  measurement .

It 's  the  repeatability  impacted   on  the  reproducibility .

Problem  of  repeatability  is  impacted on  the  reproducibility .

Now  we  check  more  closely how  it  is  different .

We  are  comparing  by  match  pair the  site  A  and  site  B  variation .

Here  our  hypothesis   is  site  A  equal  to  site  B ,

that  means  site  A   minus  site  B  equal  to  zero .

We  saw  that  our  probability   for  this  hypothesis ,

site  A  minus  site  B  equal  to  zero ,   is  less  than  0 .05  in  both  the  cases .

It  is  upper  spec  limit  and  lower  spec .

Both  the  cases  you  can  see that  it  is  probability  is  less  than  0 .05 .

That  means  site  A  and  site  B   measurement  is  different ,

and  you  can  see   our  difference  of  mean  value

and  confidence  interval is  above  the  zero  point  line .

That  means  though  this  is

site  A  measurement  is  always  higher for  site  B  measurement .

Now  from  here ,  our  question  appears , since  we  did  the  first  repeat  analysis

for  our  MSA  design  is  first  repeat ,   it  could  be  possible  like  that

if  samples  are  degraded ,   like  O /Al  composition  is  degraded .

That 's  why  we  did  again  match  pair  test

with  first  and  fourth  measurement

both  in  site  A  and  site  B   for  all  six  samples ,

and  we  found  that  here ,

first  measurement  minus  fourth measurement  equals  zero .

That  is  our  hypothesis .

We  saw  that  P -value  is  higher than  0 .05  both  the  cases .

That  means  our  sample   degradation  is  not  an  issue .

First  sample ,  there  is  no  evidence .

First  measurement and  fourth  measurement  is  dissimilar .

That  means  it  is  the  measurement  issue .

For  that ,  this  is  summarized in  the  dashboard  table ,

in  the  dashboard ,   like  our  figure  of  merit

for  gauge  R&R  24 % and  repeatability  is  21 %

and  that  repeatability  is  changing from  part  to  part  and  site  to  site ,

and  we  have  always  higher  repeatability for  site  A  compared  to  the  site  B .

Now  for  our  next  plan ,

we  plan  for  a  discussion  each  site   as  well  as  with  the  process  team .

Site  has  a  problem  like  repeatability as  well  part -site  interaction .

We  know  that  what  error  could  be introduced  in  the  measurement

like  background /baseline  correction , electron  counts ,  peak  deconvolution .

We 'll  discuss  those  methods  source   of  error  with  site  A  person ,

site  A  facility ,  and  we  will  find  out

how  we  can  do  the  streamlining  process for  improve  our  MSA .

Also  we  have  a  plan  set  up a  calibration  sample

or  we  can  set  up  a  set  up  sample

that  we  can  measure   in  regular  interval  in  the  both  sites .

On  the  other  hand ,  with  the  process  team , we 'll  talk  to  improve  MSA  next  time

to  MSA  data  collection  uniform .

Instead  of  bimodal ,   we  should  collect  the  data  uniformly .

Then  also  we  saw  part to  part  repeatability  variation .

There  is  one  reason   it  could  be  measurement  issue .

Another  reason could  be  process  is  not  uniform .

We  need  to  validate  our  thermal  math to  check  our  process  uniformity .

Finally ,  I  would  like  to  mention that  what  is  the  impact

on  my  learning  for  this  MSA  analysis .

Now  we  know  that  several  JMP  platform or  JMP  application  can  help  me  to  know

what  is  the  signal  variation from  the  noise  variation ,

and  then  we  can  identify   what  figure  of  merit  we  can  use

to  justify  our  measurement  method .

In  our  cases ,   we  found  P /T  is  the  best  method ,

best  figure  of  merit  to  analyze  it .

Then  how  misclassification  risk   can  relate  to  the  MSA  component

as  well  as  sample  distribution   that  we  learn .

Root  cause  analysis , we  did  several  JMP  application

that  can  help  us  to  plan  to  improving  MSA .

Since  it  is  very  helpful   for  particular  program  application ,

that 's  why  I  would  like  to  introduce

this  data  driven  decision  making for  all  the  programs  I  involve  in

to  improve  the  project  quality ,   cost ,  and  time .

Finally ,  I  would  like  to  promote  data driven  decision  using  JMP

in  our  advanced  technology   group  like  CTO  team ,

or  other  different  projects .

This  is  my  final  slide .

I  would  like  to  mention  my  journey .

I  started  JMP  learning   beginning  of  the  year ,

and  that  time  we  did  A0 ,  A1 ,  A2 . This  is  my  foundation .

Then  after  I  work with  MSA  analysis  and  SPC .

I  also  got  my  certificate , JMP  STIPS  certificate  May  2023 .

Now  I  am  instructor   at  AMAT  JMP  instructor .

I 'm  planning  to  in  person presentation  in  October  2023 ,

and  also  I  am  working for  my  Black  Belt  on  2024 .

Thank  you  for  listening .