
Using a Dialog Box to Create a Tailored Report
Ingredients:

• Dialogs
• User Input
• Expression Handling

Sample Data Tables – Tablet Production
Difficulty – Hard
Video Length – 5:07

This takes the code from Build a Tailored Report using Messages and generalizes it so it can be
used with two or more continuous columns from any data table. A non-modal dialog box is created
so columns can be selected by the user.

Steps:
1. Start with Names Default to Here(1) and create a variable referencing the current

data table.
2. The code below creates a non-modal dialog box. Non-modal dialogs are more flexible than

modal dialogs but a bit more complicated to work with. Any operations tied to dialog box
actions, such as button clicks, must be created in such a way that they are only executed when
the action takes place. We will use the Expr function for this.
dialog = New Window("Select Columns",
 tbWarning = Text Box("",<<Set Font Style(Bold)),
 H List Box(
 Panel Box(
 "Select one or more inputs",
 inputBox = Col List Box(All,<<Modeling Type({"Continuous"}))
)
),
 H List Box(
 Button Box(
 "OK",
 inputList = inputBox<<Get Selected;
 Eval(runOK);
),
 Button Box("Cancel",dialog<<Close Window())
)
);

a. The first argument to New Window is the text string giving the widow title. It is required.
The remaining arguments are components that provide information (Text Box), allow
user input (Button Box, Col List Box), or organize visual components (H List
Box, Panel Box).

b. Text Box is used to hold a warning message if the user selects fewer than two columns.
Initially, it is left blank.

c. By default, items are arranged vertically, stacked one on the next. Elements in H List
Box in are arranged horizontal. Panel Box draws a box around its contents and can
only take two arguments, a title and the element to be contained within the panel box.

d. Col List Box is used to populate a list box with columns from the current data table.
The All argument indicates that all the columns should be used. This is need otherwise
no items will appear. The argument <<Modeling Type({“Continuous”})
controls the Modeling Type of the columns appearing in the list box. Note that << must
appear before Modeling Type. It takes a single argument, a list, which must be text
strings corresponding to the names of JMP Modeling Types. In this case only one
Modeling Type is given, but multiple Modeling Types can be used if needed.

e. Button boxes take two arguments, a title and an optional script. Scripts can contain
multiple semicolon separated statements. The script is evaluated when the button is
clicked. The OK Button Box has two statements. The first gets the user selected items
from the Col List Box named inputBox and the second executes the code stored
in the expression runOK.

f. The Cancel button is added to let users dismiss the dialog without taking further action.
3. Create a variable runOK to hold the expression to be executed when the OK button is clicked

runOK = Expr();
The code that checks inputList and builds the report will be contained inside the Expr
function.

4. Start by checking to see if there are at least two items in inputList. If not, add a warning
to the dialog.
If(N Items(inputList) < 2,
 tbWarning << Set Text("You must select 2 or more columns");

 ,//ELSE
5. The remainder of the If statement, executed when two or more columns have been selected,

generates the report. We don’t know how many columns have been selected or their names,
so hard coding is not an option. We will build the Multivariate platform message with
expression handling starting with the argument holding the column names:
yExpr = Expr(Y());
For Each({colName},inputList,
 Insert Into(yExpr, Column(tblRef,colName))
);

The first line creates the variable to hold the argument expression and the remaining code
inserts the column references into it. We may be tempted to insert the unquoted column
name into the argument using Parse. This will work until we encounter a column name
containing a special character function name, when it will failure during platform message
evaluation.

6. Next, we want to insert the expression above into an expression holding the platform
message. This can be a bit tricky since two things need to happen. First, we want to insert
the unevaluated contents of yExpr. We will use Name Expr for this. Second, we want to
message the current data table tblRef directly and retrieve the pointer to the platform
object that is returned. This done using Substitute to build the code and Eval to execute
it.
Eval(Substitute(
 Expr(
 multivarPlt = tblRef << Multivariate(
 inCols,
 Estimation Method("Row-wise"),
 Scatterplot Matrix(1)

)
),
 Expr(inCols),Name Expr(yExpr)
));

When Substitute is used for expression handling it takes an odd number of arguments.
The first corresponds to the expression into which substitutions are made. Substitute
evaluates its first argument, so we’ll need the Expr function to treat it as an expression. The
remaining pair of arguments gives the expression within the first argument to be replaced
(inCols) and the value to use, Name Expr(yExpr). Name Expr is used because we
want the contents of yExpr as an expression, not its evaluated value.

Hints for Success:
• Outline box names are very consistent across JMP versions. Using their name is a robust way

to access items in a report window.
• To access objects associated with lower-level outline boxes, use the Get Scriptable
Object message on the outline box containing the hotspot associated with the object. If there
is no hotspot, reference the object type using the title of the outline box. In the saved script,
look for the Dispatch argument with the outline box title. It should contain object type
information.

