
Build a Tailored Report using Messages
Ingredients:

• Report objects
• Platform objects
• Enhanced Log,
• Scripting Index

Sample Data Tables: Tablet Production
Difficulty –Medium

JMP Report windows combine two separate but related objects: the underlying analysis platform
and the window in which the results are displayed. In this first recipe we will look at the simplest
case, where there is no grouping condition. While much of this can be easily implemented directly
through hard coding, it is helpful to understand how it can be done using JSL object messages.
This will let us generalize to situations where column names are unknown until runtime.

Steps:
1. Open the sample data table Tablet Production. Run Analyze > Multivariate

Methods Multivariate with all the continuous variables except Disso. Save the script to a
script window. We will use this script to build the output created interactively and given in
the next script.

2. Rerun the analysis. In the hotspot to the left of Multivariate select Simple Statistics >
Univariate Simple Statistics and Color Maps > Color Map on Correlations. In the report
window under the hotspot to the left of Scatterplot Matrix, turn off Show Points and select
Matrix Options > Heat Map, Show Historgrams > Horizontal. Turn on Show
Correlations and Nonpar Density. Close the outline box at the top titled Correlations and
shorten the Color Map on Correlations outline box name to Color Map. Resize the color
map. Save the script to a script window.

3. Examining the two scripts, we can see that the selections from the hotspot appear as
arguments to Multivariate. These options can be implemented via messaging the
platform. In most cases the argument names will be identical to the message names. To be
certain, open the Scripting Index and select Multivariate from the leftmost list. The first two
options appear in the list to the right. If you select the subcategory Scatterplot Matrix
Message you can find the remaining three messages.

4. The remaining messages are found in the SendToReport argument. They are messages
sent to report window objects. More details will be given below.

5. Add these two lines to the top of the script.
Names Default to Here(1);
tblRef = Current Data Table();

This scopes the variables to the script window and creates a reference to the last selected (or
opened) table.

6. Explicitly send the Multivariate message to the current table. The operation returns a pointer
to the Platform object associated with the analysis.

multivarPlt = tblRef << Multivariate(
.

.

.
Run this script to see what the default output looks like.

7. Messages associated with hotspot items from the topmost outline box can be sent directly to
the platform.
multivarPlt << Color Map on Correlations(1);
multivarPlt << Univariate Simple Statistics(1);

8. Hotspot items from embedded outline box require a slightly different approach. It will be
similar to how we will deal with visual items from the report.
a. Create a reference to the scriptable object associated with the hotspot.

scatterplotObj = Report(multivarPlt)["Scatterplot Matrix"] << Get Scriptable Object;
Report accesses the report tied to the analysis platform. The outline box is
referenced using its name. This works as long as it is the first outline box with this
name and the names doesn’t change over time.

b. Message the Scatterplot object reference
scatterplotObj << Show Points(0);
scatterplotObj << Heat Map(1);
scatterplotObj << Show Correlations(1);
scatterplotObj << Nonpar Density(1);
scatterplotObj << Horizontal(1);

9. Changes to non-hotspot items appear in the SendToReport argument. There is limited
documentation on SendToReport and it is common for superfluous code to appear. For
example, removing all Dispatch elements with Multiv Scatter Plot as the second
argument does not change the report window. In general, nearly all changes can be made via
messaging the appropriate report window element. Dispatch can help finding elements,
identifying their object type, and the message to be sent. The three remaining Dispatch
elements
Dispatch({}, "Correlations", OutlineBox, {Close(1)}),
Dispatch(

{},
"Color Map on Correlations",
OutlineBox,
{Set Title("Color Map")}

),
Dispatch(

{"Color Map on Correlations"},
"Color Map",
FrameBox,
{Frame Size(402, 345)}

)
can be turned into the messages
Report(multivarPlt)[Outline Box("Correlations")] << Close(1);
Report(multivarPlt)[Outline Box("Color Map on Correlations")] << Set Title("Color Map")
Report(multivarPlt)[Outline Box("Color Map"), Frame Box(1)] << Frame Size(400,345)

Here, if the first argument is an empty list the visual element is contained in the top-level
outline box (Multivariate). Otherwise, the outline box hierarchy is given. The second
argument names the display element, this is only useful for outline boxes, where the name is
given. The third argument identifies the object type and the fourth, the message. Only outline
boxes can be referenced by their name. Other objects must be located by their position among
all other like objects in the outline. In this situation, since there is only one frame box in the
entire outline, the task becomes easy.

Hints for Success:
• Outline box names are very consistent across JMP versions. Using their name is a robust way

to access items in a report window.
• To access objects associated with lower-level outline boxes, use the Get Scriptable
Object message on the outline box containing the hotspot associated with the object. If there
is no hotspot, reference the object type using the title of the outline box. In the saved script,
look for the Dispatch argument with the outline box title. It should contain object type
information.

