cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Try the Materials Informatics Toolkit, which is designed to easily handle SMILES data. This and other helpful add-ins are available in the JMP® Marketplace
%3CLINGO-SUB%20id%3D%22lingo-sub-809966%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%E5%BB%BA%E7%AB%8B%E5%85%88%E9%80%B2%E7%9A%84%E9%A0%90%E6%B8%AC%E6%A8%A1%E5%9E%8B%20-%20%E7%9F%B3%E6%B2%B9%E5%92%8C%E5%A4%A9%E7%84%B6%E6%B0%A3%E6%A1%88%E4%BE%8B%E7%A0%94%E7%A9%B6%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-809966%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%3CP%3E%E6%9C%AC%E6%A1%88%E4%BE%8B%E7%A0%94%E7%A9%B6%E4%BD%BF%E7%94%A8%20JMP%20%E5%92%8C%20JMP%20Pro%20%E5%B0%8B%E6%89%BE%E4%B8%8A%E6%B8%B8%E7%9F%B3%E6%B2%B9%E5%92%8C%E5%A4%A9%E7%84%B6%E6%B0%A3%E8%A3%BD%E7%A8%8B%EF%BC%88%E8%AD%98%E5%88%A5%E3%80%81%E6%8F%90%E5%8F%96%E5%92%8C%E7%94%9F%E7%94%A2%E5%8E%9F%E6%9D%90%E6%96%99%EF%BC%89%E4%B8%AD%E7%9A%84%E6%9C%80%E4%BD%B3%E5%9C%B0%E8%B3%AA%E5%92%8C%E5%AE%8C%E4%BA%95%E5%8F%83%E6%95%B8%E3%80%82%3C%2FP%3E%0A%3CP%3E%20%3C%2FP%3E%0A%3CP%3E%20%3C%2FP%3E%0A%3CP%3E%3C%2FP%3E%3CDIV%20class%3D%22lia-vid-container%20video-embed-center%22%3E%3CDIV%20id%3D%22lia-vid-6232415486001w480h270r60%22%20class%3D%22lia-video-brightcove-player-container%22%3E%3CVIDEO-JS%20data-video-id%3D%226232415486001%22%20data-account%3D%226058004218001%22%20data-player%3D%22default%22%20data-embed%3D%22default%22%20class%3D%22vjs-fluid%22%20controls%3D%22%22%20data-application-id%3D%22%22%20style%3D%22width%3A%20100%25%3B%20height%3A%20100%25%3B%22%3E%3C%2FVIDEO-JS%3E%3C%2FDIV%3E%3CSCRIPT%20src%3D%22https%3A%2F%2Fplayers.brightcove.net%2F6058004218001%2Fdefault_default%2Findex.min.js%22%3E%3C%2FSCRIPT%3E%3CA%20class%3D%22video-embed-link%22%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fvideo%2Fgallerypage%2Fvideo-id%2F6232415486001%22%20target%3D%22_blank%22%3E%EF%BC%88%E5%9C%A8%E6%88%91%E7%9A%84%E5%BD%B1%E7%89%87%E4%B8%AD%E6%9F%A5%E7%9C%8B%EF%BC%89%3C%2FA%3E%3C%2FDIV%3E%3CP%3E%3C%2FP%3E%0A%3CP%3E%20%3C%2FP%3E%0A%3CP%3E%E8%AB%8B%E5%8F%83%E9%96%B1%E5%A6%82%E4%BD%95%EF%BC%9A%3C%2FP%3E%0A%3CUL%3E%0A%3CLI%3E%E4%BA%86%E8%A7%A3%E6%A8%A1%E5%9E%8B%E7%9A%84%E7%9B%AE%E6%A8%99%20-%20%E7%A2%BA%E5%AE%9A%E5%9C%A8%E6%AD%A4%E9%81%8E%E7%A8%8B%E4%B8%AD%E4%BD%BF%E7%94%A8%E9%A1%8D%E5%A4%96%E7%9A%84%E6%98%82%E8%B2%B4%E5%9B%BA%E9%AB%94%E6%9D%90%E6%96%99%EF%BC%88%E6%94%AF%E6%92%90%E5%8A%91%EF%BC%89%E7%9A%84%E6%94%B6%E7%9B%8A%E9%81%9E%E6%B8%9B%E9%BB%9E%3C%2FLI%3E%0A%3CLI%3E%E4%BA%86%E8%A7%A3%E5%88%A9%E6%81%AF%E9%9F%BF%E6%87%89%20-%20%E4%B8%80%E5%B9%B4%E5%85%A7%E7%89%B9%E5%AE%9A%E4%BA%95%E7%94%9F%E7%94%A2%E7%9A%84%E7%9F%B3%E6%B2%B9%E5%92%8C%E5%A4%A9%E7%84%B6%E6%B0%A3%E7%B8%BD%E9%87%8F%E3%80%82%3C%2FLI%3E%0A%3CLI%3E%E4%BA%86%E8%A7%A3%E7%A0%94%E7%A9%B6%E5%9B%A0%E7%B4%A0%3CUL%3E%3CLI%3E%E6%8E%A7%E5%88%B6%E5%9B%A0%E7%B4%A0%EF%BC%8820%E5%80%8B%E5%AE%8C%E4%BA%95%E5%8F%83%E6%95%B8%E3%80%81%E6%94%AF%E6%92%90%E5%8A%91%E7%94%A8%E9%87%8F%E3%80%81%E5%B0%84%E5%AD%94%E6%B7%B1%E5%BA%A6%E3%80%81%E5%AE%8C%E4%BA%95%E9%9A%8E%E6%AE%B5%E6%95%B8%E3%80%81%E5%81%B4%E4%BA%95%E9%95%B7%E5%BA%A6%EF%BC%89%3C%2FLI%3E%3CLI%3E%E5%81%BD%E6%8E%A7%E5%88%B6%E5%9B%A0%E7%B4%A0%EF%BC%88%E4%BD%8D%E7%BD%AE%E5%8F%83%E6%95%B8%E3%80%81%E7%B8%A3%E3%80%81%E7%B7%AF%E5%BA%A6%E3%80%81%E7%B6%93%E5%BA%A6%EF%BC%89%3C%2FLI%3E%3CLI%3E%E4%B8%8D%E5%8F%97%E6%8E%A7%E5%88%B6%E7%9A%84%E5%9B%A0%E7%B4%A0%EF%BC%8823%E5%80%8B%E5%9C%B0%E8%B3%AA%E5%8F%83%E6%95%B8%E3%80%81%E7%9B%B8%E3%80%81%E5%84%B2%E5%B1%A4%E5%8E%9A%E5%BA%A6%E3%80%81%E5%AD%94%E9%9A%99%E5%BA%A6%E5%92%8C%E6%BB%B2%E9%80%8F%E7%8E%87%E3%80%81%EF%BC%88TOC%EF%BC%89%E7%B8%BD%E6%9C%89%E6%A9%9F%E7%A2%B3%EF%BC%89%3C%2FLI%3E%3C%2FUL%3E%3C%2FLI%3E%0A%3CLI%3E%E6%BA%96%E5%82%99%E8%B3%87%E6%96%99%E9%80%B2%E8%A1%8C%E5%88%86%E6%9E%90%3CUL%3E%3CLI%3E%3CSPAN%3E%E4%BD%BF%E7%94%A8%E6%8F%92%E8%A3%9C%E8%99%95%E7%90%86%E7%BC%BA%E5%A4%B1%E5%80%BC%3C%2FSPAN%3E%3C%2FLI%3E%3C%2FUL%3E%3C%2FLI%3E%0A%3CLI%3E%E4%BD%BF%E7%94%A8%E9%A0%90%E6%B8%AC%E5%9B%A0%E5%AD%90%E7%AF%A9%E9%81%B8%E5%BE%9E%E6%89%80%E6%9C%89%E5%9B%A0%E7%B4%A0%E4%B8%AD%E8%AD%98%E5%88%A5%E9%87%8D%E8%A6%81%E7%9A%84%E9%A0%90%E6%B8%AC%E5%9B%A0%E5%AD%90%3CUL%3E%3CLI%3E%E4%BD%BF%E7%94%A8%20Bootstrap%20Forest%20%E5%B0%8D%E6%89%80%E6%9C%89%E9%A0%90%E6%B8%AC%E8%AE%8A%E6%95%B8%E9%80%B2%E8%A1%8C%E6%8E%92%E5%90%8D%3C%2FLI%3E%3C%2FUL%3E%3C%2FLI%3E%0A%3CLI%3E%E4%BD%BF%E7%94%A8%E6%93%AC%E5%90%88%E6%A8%A1%E5%9E%8B%E5%BB%BA%E7%AB%8B%E6%A8%A1%E5%9E%8B%EF%BC%8C%E4%BD%BF%E7%94%A8%E5%90%84%E7%A8%AE%E6%93%AC%E5%90%88%E6%8A%80%E8%A1%93%E3%80%81%E6%A8%A1%E5%9E%8B%E5%8F%83%E6%95%B8%E5%92%8C%E5%85%B6%E4%BB%96%E8%A8%AD%E5%AE%9A%EF%BC%88%E5%8C%85%E6%8B%AC%E9%9A%A8%E6%A9%9F%E6%95%88%E6%87%89%EF%BC%89%E5%BF%AB%E9%80%9F%E9%96%8B%E7%99%BC%E7%B0%A1%E5%96%AE%E5%88%B0%E8%A4%87%E9%9B%9C%E7%9A%84%E7%B7%9A%E6%80%A7%E6%A8%A1%E5%9E%8B%3CUL%3E%3CLI%3E%E5%BB%BA%E6%A7%8B%E6%A8%99%E6%BA%96%E6%9C%80%E5%B0%8F%E5%B9%B3%E6%96%B9%E6%B3%95%E6%A8%A1%E5%9E%8B%20(JMP)%3C%2FLI%3E%3CLI%3E%E5%BB%BA%E7%AB%8B%E9%80%90%E6%AD%A5%E8%BF%B4%E6%AD%B8%E6%A8%A1%E5%9E%8B%20(JMP)%3C%2FLI%3E%3CLI%3E%E5%BB%BA%E6%A7%8BLogistic%E8%BF%B4%E6%AD%B8%E6%A8%A1%E5%9E%8B%EF%BC%88JMP%EF%BC%89%3C%2FLI%3E%3CLI%3E%E4%BD%BF%E7%94%A8%E5%BB%A3%E7%BE%A9%E8%BF%B4%E6%AD%B8%20(Pro)%20%E5%BB%BA%E7%AB%8B%E6%96%87%E5%AD%97%E3%80%81%E9%A9%97%E8%AD%89%E5%92%8C%E8%A8%93%E7%B7%B4%E9%9B%86%EF%BC%8C%E7%84%B6%E5%BE%8C%E5%B0%8D%E7%9B%B8%E9%97%9C%E8%B3%87%E6%96%99%E5%92%8C%E9%AB%98%E7%B6%AD%E5%BA%A6%E8%B3%87%E6%96%99%E9%80%B2%E8%A1%8C%E5%BB%BA%E6%A8%A1%3C%2FLI%3E%3C%2FUL%3E%3C%2FLI%3E%0A%3CLI%3E%E4%BD%BF%E7%94%A8%20JMP%20Pro%20%E9%80%8F%E9%81%8E%E5%B9%B3%E5%9D%87%E8%A8%B1%E5%A4%9A%E6%B1%BA%E7%AD%96%E6%A8%B9%E4%BE%86%E6%93%AC%E5%90%88%E6%95%B4%E5%90%88%E6%A8%A1%E5%9E%8B%3CUL%3E%3CLI%3E%E4%BA%86%E8%A7%A3%E6%AF%8F%E5%80%8B%E5%88%86%E5%89%B2%E5%A6%82%E4%BD%95%E8%80%83%E6%85%AE%E9%A0%90%E6%B8%AC%E8%AE%8A%E6%95%B8%E7%9A%84%E9%9A%A8%E6%A9%9F%E5%AD%90%E9%9B%86%3C%2FLI%3E%3CLI%3E%E4%BD%BF%E7%94%A8%20Prediction%20Profiler%20%E7%A2%BA%E5%AE%9A%E6%94%B6%E7%9B%8A%E9%81%9E%E6%B8%9B%E9%BB%9E%3C%2FLI%3E%3C%2FUL%3E%3C%2FLI%3E%0A%3C%2FUL%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22specifying.JPG%22%20style%3D%22width%3A%20567px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22specifying.JPG%22%20style%3D%22width%3A%20567px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22specifying.JPG%22%20style%3D%22width%3A%20567px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F30933i08122B6F16B5CDA5%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22specifying.JPG%22%20alt%3D%22specifying.JPG%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3C%2FLINGO-BODY%3E%3CLINGO-LABS%20id%3D%22lingo-labs-809966%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CLINGO-LABEL%3E%E9%80%B2%E9%9A%8E%E7%B5%B1%E8%A8%88%E5%BB%BA%E6%A8%A1%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E
Choose Language Hide Translation Bar

Building Advanced Predictive Models - Oil and Gas Case Study

Published on ‎11-07-2024 03:29 PM by Community Manager Community Manager | Updated on ‎11-07-2024 05:39 PM

This case study uses JMP and JMP Pro to find optimal geologic and completion parameters in upstream oil and gas processes (identifying, extracting and producing raw materials).

 

 

 

See how to:

  • Understand the goal of the models - to determine point of diminishing return for using additional, expensive solid material (proppant) in the process
  • Understand the  response of interest - gross amount of oil and gas produced from a particular well over one year.
  • Understand the study factors
    • Controlled factors (20 completion parameters, amount of proppant, well perforation depth, # of completion stages, lateral well length)
    • Pseudo-controlled factors (location parameters, county, latitude, longitude)
    • Uncontrolled factors (23 geologic parameters, facies, reservoir thickness, porosity & permeability, (TOC) total organic carbon)
  • Prepare data for analysis
    • Handle missing values using imputation
  • Use Predictor Screening to identify significant predictors out of all factors
    • Rank all predictors using Bootstrap Forest 
  • Build model using Fit Model to rapidly develop simple to complex linear models using various fitting techniques, model parameters, and additional settings including random effects
    • Construct Standard Least Squares model (JMP)
    • Construct Stepwise Regression model (JMP)
    • Construct Logistic Regression model (JMP)
    • Use Generalized Regression (Pro)to create text, validation and training sets and then model correlated and high-dimensional data
  • Use JMP Pro to fit an ensemble model by averaging many decision trees
    • See how each split considers a random subset of the predictors
    • Use Prediction Profiler to identify point of diminishing returns

specifying.JPG



Start:
Tue, Sep 22, 2020 02:00 PM EDT
End:
Tue, Sep 22, 2020 03:00 PM EDT
Labels (1)
Attachments
0 Kudos
0 Comments