Created:
May 25, 2023 12:49 PM
| Last Modified: Jun 8, 2023 2:15 PM(1342 views)
Hello, I am trying to model variable speed pool pump parameters: runtimes, speeds, and flow rates in order to minimize my power bill, but also achieve decent flow. I've hit a stumbling block with modeling the data.
Pump constraints: Max 24 hr run duration, Max of 3 speeds can be used per day, Speed increments are 2 hr blocks (0,2,4,6...24)
Please attach your data as a JMP data table in the future. I spent time copying it to a JMP data table as a single character data column and then split it into three numeric data columns.
The simplest model is usually the best. You are interested in predicting the effect, not in explaining the effect. I plotted the data first.
The Speed and Pump Flow are highly, linearly correlated, so both of them cannot be used as predictors in any type of model. I chose Speed as the predictor of Power. The relationship is curvilinear.
Several models were fit to the data. The Cubic Polynomial model is the best by far based on AICc.
I attached the JMP data table with your data and several saved table scripts to reproduce my analysis.
Thanks for this part of the answer. How can we take this data and make an interactive model simulating 1-3 speeds / 1-3 run times / with a goal of 43000 gal of total volume, but optimize the energy use and volume moved in a day?
Goals: minimize energy use, but using at least 1 speed of the 3 speeds >=2500 (can use 2 other speeds/run times if needed), move at least 43000 gal in a day.
Run the selected model and save it as a column formula. Then open the Profiler with the column formula. The Profiler is the easiest way to evaluate different settings.
You need a column for Run Time and another for Cost. You can add Cost as a second response, or maybe it is the primary response.
Is the pump speed ordinal, or can you set something in between those values? If it is continuous then it seems the optimal value would be as slow as possible as the specific power always decreases with lower flow. You could find that optimal flow given your constraints using the profiler as @Mark_Bailey suggests. Here is how I did it, run the script below to recreate the table with saved scripts.
Calculate specific power in a new column, or the power per unit of flow
Calculate flow in gal/day in a new column (I assumed the flow is gpm)
Model the flow based on the pump speed. I used a neural network because it captured the visual curve in the data while giving smooth response between points and without responding to what looks like noise around 2500-3000 RPM, save the profiler prediction formula. (Script 1)
Model the specific power, again a neural networked and saved the profiler formula (Script 2)
Check the predicted versus actual values for reasonableness (Script 3)
Use column properties to set a lower spec on the flow and a a response limit to minimize specific power
Found optimal conditions using the profiler, using both predicted columns in the y and rpm in the X. Used Maximize Desirability to find the optimal pump setting. (Script 5)
Created:
Jun 2, 2023 09:33 PM
| Last Modified: Jun 2, 2023 7:23 PM(1223 views)
| Posted in reply to message from ih 05-30-2023
Hello ih,
The pump speeds are not continuously variable, they are discreet levels, each will have its own power and flow, and 2 or 3 speeds must be chosen for a days run cycle.
Using the lowest RPM setting all the time is tempting, but there is a need to run devices such as salt generators, vacuum, solar heat, etc on most pools that introduces a need to have at least 1 of the settings at a minimum of 2500 RPM for at least 2-4 hours per day. It leads to a low, medium, high RPM scenario (or at least a low + high) to ensure enough volume and accessory capability.
I ran the scripts you provided, thanks for that. Should we be modeling this data to have 3 columns each for Speed 1, Speed 2, Speed 3, and then 3 each for the corresponding Power 1,2,3 and Flow 1,2,3, levels; the total flow and total power for the day are calculated based on sub-levels of power and flow? When I am seeing only 1 speed in the prediction profiler I am getting confused I guess.
'
var data = div.getElementsByClassName("video-js");
var script = document.createElement('script');
script.src = "https://players.brightcove.net/" + data_account + "/" + data_palyer + "_default/index.min.js";
for(var i=0;i< data.length;i++){
videodata.push(data[i]);
}
}
}
for(var i=0;i< videodata.length;i++){
document.getElementsByClassName('lia-vid-container')[i].innerHTML = videodata[i].outerHTML;
document.body.appendChild(script);
}
}
catch(e){
}
/* Re compile html */
$compile(rootElement.querySelectorAll('div.lia-message-body-content')[0])($scope);
}
if (code_l.toLowerCase() != newBody.getAttribute("slang").toLowerCase()) {
/* Adding Translation flag */
var tr_obj = $filter('filter')($scope.sourceLangList, function (obj_l) {
return obj_l.code.toLowerCase() === newBody.getAttribute("slang").toLowerCase()
});
if (tr_obj.length > 0) {
tr_text = "This post originally written in lilicon-trans-text has been computer translated for you. When you reply, it will also be translated back to lilicon-trans-text.".replace(/lilicon-trans-text/g, tr_obj[0].title);
try {
if ($scope.wootMessages[$rootScope.profLang] != undefined) {
tr_text = $scope.wootMessages[$rootScope.profLang].replace(/lilicon-trans-text/g, tr_obj[0].title);
}
} catch (e) {
}
} else {
//tr_text = "This message was translated for your convenience!";
tr_text = "This message was translated for your convenience!";
}
try {
if (!document.getElementById("tr-msz-" + value)) {
var tr_para = document.createElement("P");
tr_para.setAttribute("id", "tr-msz-" + value);
tr_para.setAttribute("class", "tr-msz");
tr_para.style.textAlign = 'justify';
var tr_fTag = document.createElement("IMG");
tr_fTag.setAttribute("class", "tFlag");
tr_fTag.setAttribute("src", "/html/assets/lingoTrFlag.PNG");
tr_fTag.style.marginRight = "5px";
tr_fTag.style.height = "14px";
tr_para.appendChild(tr_fTag);
var tr_textNode = document.createTextNode(tr_text);
tr_para.appendChild(tr_textNode);
/* Woot message only for multi source */
if(rootElement.querySelector(".lia-quilt-forum-message")){
rootElement.querySelector(".lia-quilt-forum-message").appendChild(tr_para);
} else if(rootElement.querySelector(".lia-message-view-blog-topic-message")) {
rootElement.querySelector(".lia-message-view-blog-topic-message").appendChild(tr_para);
} else if(rootElement.querySelector(".lia-quilt-blog-reply-message")){
rootElement.querySelector(".lia-quilt-blog-reply-message").appendChild(tr_para);
} else if(rootElement.querySelector(".lia-quilt-tkb-message")){
rootElement.querySelector(".lia-quilt-tkb-message").appendChild(tr_para);
} else if(rootElement.querySelector(".lia-quilt-tkb-reply-message")){
rootElement.querySelector(".lia-quilt-tkb-reply-message").insertBefore(tr_para,rootElement.querySelector(".lia-quilt-row.lia-quilt-row-footer"));
} else if(rootElement.querySelector(".lia-quilt-idea-message")){
rootElement.querySelector(".lia-quilt-idea-message").appendChild(tr_para);
}else if(rootElement.querySelector(".lia-quilt-column-alley-left")){
rootElement.querySelector(".lia-quilt-column-alley-left").appendChild(tr_para);
}
else {
if (rootElement.querySelectorAll('div.lia-quilt-row-footer').length > 0) {
rootElement.querySelectorAll('div.lia-quilt-row-footer')[0].appendChild(tr_para);
} else {
rootElement.querySelectorAll('div.lia-quilt-column-message-footer')[0].appendChild(tr_para);
}
}
}
} catch (e) {
}
}
} else {
/* Do not display button for same language */
// syncList.remove(value);
var index = $scope.syncList.indexOf(value);
if (index > -1) {
$scope.syncList.splice(index, 1);
}
}
}
}
}
}
angular.forEach(mszList_l, function (value) {
if (document.querySelectorAll('div.lia-js-data-messageUid-' + value).length > 0) {
var rootElements = document.querySelectorAll('div.lia-js-data-messageUid-' + value);
}else if(document.querySelectorAll('.lia-occasion-message-view .lia-component-occasion-message-view').length >0){
var rootElements = document.querySelectorAll('.lia-occasion-message-view .lia-component-occasion-message-view')[0].querySelectorAll('.lia-occasion-description')[0];
}else {
var rootElements = document.querySelectorAll('div.message-uid-' + value);
}
angular.forEach(rootElements, function (rootElement) {
if (value == '635640' && "ForumTopicPage" == "TkbArticlePage") {
rootElement = document.querySelector('.lia-thread-topic');
}
/* V1.1 Remove from UI */
if (document.getElementById("tr-msz-" + value)) {
document.getElementById("tr-msz-" + value).remove();
}
if (document.getElementById("tr-sync-" + value)) {
document.getElementById("tr-sync-" + value).remove();
}
/* XPath expression for subject and Body */
var lingoRBExp = "//lingo-body[@id = " + "'lingo-body-" + value + "'" + "]";
lingoRSExp = "//lingo-sub[@id = " + "'lingo-sub-" + value + "'" + "]";
/* Get translated subject of the message */
lingoRSXML = doc.evaluate(lingoRSExp, doc, null, XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE, null);
for (var i = 0; i < lingoRSXML.snapshotLength; i++) {
/* Replace Reply/Comment subject with transalted subject */
var newSub = lingoRSXML.snapshotItem(i);
/*** START : extracting subject from source if selected language and source language is same **/
var sub_L = "";
if (newSub.getAttribute("slang").toLowerCase() == code_l.toLowerCase()) {
if (value == '635640') {
sub_L = decodeURIComponent($scope.sourceContent[value].subject);
}
else{
sub_L = decodeURIComponent($scope.sourceContent[value].subject);
}
} else {
sub_L = newSub.innerHTML;
}
/*** End : extracting subject from source if selected language and source language is same **/
/* This code is placed to remove the extra meta tag adding in the UI*/
try{
sub_L = sub_L.replace('<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />','');
}
catch(e){
}
// if($scope.viewTrContentOnly || (newSub.getAttribute("slang").toLowerCase() != code_l.toLowerCase())) {
if ($scope.viewTrContentOnly) {
if ("ForumTopicPage" == "IdeaPage") {
if (value == '635640') {
if( (sub_L != "") && (sub_L != undefined) && (sub_L != "undefined") ){
document.querySelector('.MessageSubject .lia-message-subject').innerHTML = sub_L;
}
}
}
if ("ForumTopicPage" == "TkbArticlePage") {
if (value == '635640') {
if( (sub_L != "") && (sub_L != undefined) && (sub_L != "undefined") ){
var subTkbElement = document.querySelector('.lia-thread-subject');
if(subTkbElement){
document.querySelector('.lia-thread-subject').innerHTML = sub_L;
}
}
}
}
else if ("ForumTopicPage" == "BlogArticlePage") {
if (value == '635640') {
try {
if((sub_L != "") && (sub_L!= undefined) && (sub_L != "undefined")){
var subElement = rootElement.querySelector('.lia-blog-article-page-article-subject');
if(subElement) {
subElement.innerText = sub_L;
}
}
} catch (e) {
}
/* var subElement = rootElement.querySelectorAll('.lia-blog-article-page-article-subject');
for (var subI = 0; subI < subElement.length; subI++) {
if((sub_L != "") && (sub_L!= undefined) && (sub_L != "undefined")){
subElement[subI].innerHTML = sub_L;
}
} */
}
else {
try {
// rootElement.querySelectorAll('.lia-blog-article-page-article-subject').innerHTML= sub_L;
/** var subElement = rootElement.querySelectorAll('.lia-blog-article-page-article-subject');
for (var j = 0; j < subElement.length; j++) {
if( (sub_L != "") && (sub_L != undefined) && (sub_L != "undefined") ){
subElement[j].innerHTML = sub_L;
}
} **/
} catch (e) {
}
}
}
else {
if (value == '635640') {
try{
/* Start: This code is written by iTalent as part of iTrack LILICON - 98 */
if( (sub_L != "") && (sub_L != undefined) && (sub_L != "undefined") ){
if(document.querySelectorAll('.lia-quilt-forum-topic-page').length > 0){
if(rootElement.querySelector('div.lia-message-subject').querySelector('h5')){
rootElement.querySelector('div.lia-message-subject').querySelector('h5').innerText = decodeURIComponent(sub_L);
} else {
rootElement.querySelector('.MessageSubject .lia-message-subject').innerText = sub_L;
}
} else {
rootElement.querySelector('.MessageSubject .lia-message-subject').innerText = sub_L;
}
}
/* End: This code is written by iTalent as part of iTrack LILICON - 98 */
}
catch(e){
console.log("subject not available for second time. error details: " + e);
}
} else {
try {
/* Start: This code is written by iTalent as part of LILICON - 98 reported by Ian */
if ("ForumTopicPage" == "IdeaPage") {
if( (sub_L != "") && (sub_L != undefined) && (sub_L != "undefined") ){
document.querySelector('.lia-js-data-messageUid-'+ value).querySelector('.MessageSubject .lia-message-subject').innerText = sub_L;
}
}
else{
if( (sub_L != "") && (sub_L != undefined) && (sub_L != "undefined") ){
rootElement.querySelector('.MessageSubject .lia-message-subject').innerText = sub_L;
/* End: This code is written as part of LILICON - 98 reported by Ian */
}
}
} catch (e) {
console.log("Reply subject not available. error details: " + e);
}
}
}
// Label translation
var labelEle = document.querySelector("#labelsForMessage");
if (!labelEle) {
labelEle = document.querySelector(".LabelsList");
}
if (labelEle) {
var listContains = labelEle.querySelector('.label');
if (listContains) {
/* Commenting this code as bussiness want to point search with source language label */
// var tagHLink = labelEle.querySelectorAll(".label")[0].querySelector(".label-link").href.split("label-name")[0];
var lingoLabelExp = "//lingo-label/text()";
trLabels = [];
trLabelsHtml = "";
/* Get translated labels of the message */
lingoLXML = doc.evaluate(lingoLabelExp, doc, null, XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE, null);
/* try{
for(var j=0;j,';
}
trLabelsHtml = trLabelsHtml+'