cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Discussions

Solve problems, and share tips and tricks with other JMP users.
%3CLINGO-SUB%20id%3D%22lingo-sub-264079%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EAn%C3%A1lisis%20PCA%20%2F%20Factor%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-264079%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ETengo%20un%20conjunto%20de%20datos%20de%20ciencias%20sociales%20que%20contiene%20muchas%20variables%20categ%C3%B3ricas%20ordinales%20con%26gt%3B%202%20niveles%20que%20est%C3%A1n%20vinculados%20a%20puntuaciones%20como%201%202%203%20..%3C%2FP%3E%3CP%3EMe%20preguntaron%20si%20hay%20correlaciones%20entre%20estas%20variables%20ordinales%2C%20por%20lo%20que%20me%20pregunto%3A%20%C2%BFc%C3%B3mo%20llevar%20a%20cabo%20la%20correlaci%C3%B3n%20y%20el%20an%C3%A1lisis%20PCA%20%2F%20Factor%20con%20este%20tipo%20de%20datos%3F%20%C2%A1Gracias%20por%20la%20ayuda!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-264096%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-264096%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ELas%20correlaciones%20son%20para%20variables%20continuas.%20Las%20asociaciones%20son%20para%20variables%20categ%C3%B3ricas.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELe%20sugiero%20que%20pruebe%20el%20An%C3%A1lisis%20de%20correspondencia%20m%C3%BAltiple.%20Ver%20los%20cap%C3%ADtulos%20en%20el%20%3CSTRONG%3E%20Ayuda%26gt%3B%20Biblioteca%20de%20documentaci%C3%B3n%20de%20JMP%26gt%3B%20M%C3%A9todos%20multivariados%20%3C%2FSTRONG%3E%20gu%C3%ADa.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-264998%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-264998%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EMarc%2C%20gracias%20por%20ingresar%20este%20an%C3%A1lisis%20de%20correspondencia%20m%C3%BAltiple%20funciona%20bien%20para%20datos%20categ%C3%B3ricos.%3C%2FP%3E%3CP%3ETambi%C3%A9n%20tengo%20datos%20que%20son%20num%C3%A9ricos%20discretos%2C%20como%201%202%204%205.%20%C2%BFEs%20posible%20llevar%20a%20cabo%20un%20an%C3%A1lisis%20de%20PCA%20%2F%20factor%20confiable%20sobre%20dichos%20datos%2C%20es%20decir%2C%20el%20an%C3%A1lisis%20factorial%20dar%C3%A1%20una%20agrupaci%C3%B3n%20correcta%20de%20los%20efectos%20discretos%20correlacionados%3F%20%C2%BFNo%20es%20mejor%20usar%20el%20enfoque%20de%20correlaci%C3%B3n%20de%20Spearman%3F%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265016%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265016%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ENo%2C%20PCA%20o%20an%C3%A1lisis%20factorial%20no%20son%20apropiados%20para%20analizar%20sus%20datos%20ordinales.%20Los%20valores%20no%20son%20num%C3%A9ricos.%20Son%20solo%20etiquetas.%20Podr%C3%ADan%20ser%20de%20%22A%22%20a%20%22E%22.%20No%20usar%C3%ADas%20PCA%20o%20an%C3%A1lisis%20factorial%20con%20%22A%22%20a%20%22E%22%2C%20%C2%BFverdad%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265039%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265039%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EOk%20si%20los%20n%C3%BAmeros%20de%20hower%20odinal%20tambi%C3%A9n%20pueden%20ser%20recuentos%20o%20puntuaciones%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265053%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265053%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EPuede%20tener%20recuentos%20de%20niveles%20discretos.%20%C2%BFSon%20las%20variables%20categ%C3%B3ricas%3F%20%C2%BFEst%C3%A1s%20contando%20estos%20niveles%3F%20Todav%C3%ADa%20es%20un%20an%C3%A1lisis%20de%20datos%20categ%C3%B3rico.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265090%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265090%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EPiense%20que%20hay%20un%20malentendido%20relacionado%20con%20el%20t%C3%ADtulo%20de%20mi%20discusi%C3%B3n%20en%20referencia%20a%20los%20datos%20ordinales%3B%20Esto%20se%20puede%20manejar%20con%20correspondencia%20m%C3%BAltiple.%3C%2FP%3E%3CP%3ESin%20embargo%2C%20adem%C3%A1s%20de%20las%20variables%20ordinales%2C%20mi%20conjunto%20de%20datos%20tambi%C3%A9n%20contiene%20muchos%20factores%20que%20son%20num%C3%A9ricos%20discretos%2C%20como%20recuentos%20(%23defectos)%20y%20puntajes%20(calificaciones%201%20a%205)%2C%20por%20lo%20que%20mi%20pregunta%20es%20si%20es%20posible%20el%20an%C3%A1lisis%20factorial%20para%20estas%20variables%20num%C3%A9ricas%20discretas%20para%20encontrar%20el%20estructura%20de%20correlaci%C3%B3n%20subyacente%3F%20Estoy%20confundido%20acerca%20de%20la%20correlaci%C3%B3n%20entre%20estas%20variables%20discretas%3A%20cuando%20hago%20una%20correlaci%C3%B3n%20multivariada%2C%20las%20correlaciones%20se%20ven%20terribles.%20Por%20otro%20lado%2C%20cuando%20busco%20en%20el%20mapa%20de%20color%2C%20%C2%BFaparecen%20muchos%20puntos%20rojos%20y%20rosas%20que%20indican%20correlaci%C3%B3n%3F%20%C2%BFC%C3%B3mo%20analizar%20correctamente%20estos%20factores%20discretos%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265151%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265151%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EEstoy%20de%20acuerdo%20en%20que%20hay%20un%20malentendido.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EPor%20favor%20mira%20esto%20%3CA%20href%3D%22https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMultiple_correspondence_analysis%22%20target%3D%22_self%22%20rel%3D%22nofollow%20noopener%20noreferrer%22%3E%20art%C3%ADculo%20%3C%2FA%3E%20.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265241%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265241%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EGracias%20por%20el%20art%C3%ADculo%20sobre%20MCA%2C%20%C2%BFqu%C3%A9%20hay%20de%20Latent%20Class%20Analyis%3F%20%C2%BFEs%20este%20un%20enfoque%20equivalente%20para%20clasificar%20las%20variables%20ordinales%3F%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265265%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265265%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ELCA%20agrupa%20filas%20en%20funci%C3%B3n%20de%20la%20frecuencia.%20An%C3%A1lisis%20sem%C3%A1ntico%20latente%20agrupa%20los%20niveles%20(variables).%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265772%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265772%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%C2%A1MCA%20funciona%20bien%2C%20es%20una%20gran%20herramienta%20para%20encontrar%20asociaciones!%20Solo%20que%20no%20s%C3%A9%20c%C3%B3mo%20interpretar%20la%20%22dimensi%C3%B3n%22%2C%20%C2%BFqu%C3%A9%20significa%20una%20puntuaci%C3%B3n%20baja%20o%20alta%20en%20la%20dimensi%C3%B3n%201%20o%202%3F%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265779%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20PCA%20%2F%20An%C3%A1lisis%20factorial%20con%20datos%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265779%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ELa%20dimensi%C3%B3n%20en%20MCA%20es%20la%20misma%20que%20en%20PCA.%20Los%20datos%20continuos%20para%20la%20PCA%20aqu%C3%AD%20son%20las%20distancias%20de%20chi%20cuadrado%20de%20MCA%20y%20escaladas%20antes%20de%20la%20PCA.%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
frankderuyck
Level VI

PCA/Factor Analysis with ordinal data

I have a dataset from social sciences that contains many ordinal categorical variables with > 2 levels which are linked to scores like 1 2 3..

I was asked if there are correlations between these ordinal variables so question: how to carry out correlation and PCA/Factor Analysis with this kind of data? Thanks for help!

11 REPLIES 11
frankderuyck
Level VI

Re: PCA/Factor Analysis with ordinal data

MCA works fine, great tool for finding associations! I only don't know how to inerpret "dimension" what means a low or high score on dimension 1 or 2? 

Re: PCA/Factor Analysis with ordinal data

The dimension in MCA is the same as in PCA. The continuous data for the PCA here are the chi square distances from MCA and scaled before the PCA.

Recommended Articles