cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Try the Materials Informatics Toolkit, which is designed to easily handle SMILES data. This and other helpful add-ins are available in the JMP® Marketplace
%3CLINGO-SUB%20id%3D%22lingo-sub-666094%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%E5%A6%82%E4%BD%95%E6%AF%94%E8%BC%83%E7%94%B1%203%20%E5%8F%83%E6%95%B8%E9%82%8F%E8%BC%AF%E6%A8%A1%E5%9E%8B%E5%BB%BA%E6%A8%A1%E7%9A%84%E5%A4%9A%E7%B5%84%E6%95%B8%E6%93%9A%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-666094%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%E4%BD%A0%E5%A5%BD%EF%BC%8C%3CBR%20%2F%3E%3CBR%20%2F%3E%E6%88%91%E7%84%A1%E6%B3%95%E6%89%BE%E5%88%B0%E9%87%9D%E5%B0%8D%E9%80%99%E5%80%8B%E7%89%B9%E5%AE%9A%E5%95%8F%E9%A1%8C%E7%9A%84%E5%A4%A7%E9%87%8F%E8%B3%87%E6%BA%90%E3%80%82%3CBR%20%2F%3E%3CBR%20%2F%3E%E8%AA%9E%E5%A2%83%EF%BC%9A%3CBR%20%2F%3E%E6%88%91%E6%AD%A3%E5%9C%A8%E7%A0%94%E7%A9%B6%E6%98%86%E8%9F%B2%E7%9A%84%E7%BE%BD%E5%8C%96%EF%BC%88%E8%AE%8A%E6%85%8B%E5%BE%8C%EF%BC%89%E3%80%82%20%E6%88%91%E5%80%91%E6%AD%A3%E5%9C%A8%E8%A8%98%E9%8C%84%E9%9A%A8%E8%91%97%E6%99%82%E9%96%93%E7%9A%84%E6%8E%A8%E7%A7%BB%E5%87%BA%E7%8F%BE%E7%9A%84%E5%88%9D%E5%A7%8B%E7%A8%AE%E7%BE%A4%E7%9A%84%E6%AF%94%E4%BE%8B%E3%80%82%3CBR%20%2F%3E%E5%B0%8D%E6%96%BC%E4%B8%80%E7%BE%A4%E5%80%8B%E9%AB%94%E4%BE%86%E8%AA%AA%EF%BC%8C%E9%80%99%E7%A8%AE%E7%8F%BE%E8%B1%A1%E7%B8%BD%E6%98%AF%E9%81%B5%E5%BE%AA%E4%B8%89%E5%8F%83%E6%95%B8%E9%82%8F%E8%BC%AF%E6%A8%A1%E5%9E%8B%EF%BC%8C%E4%BD%86%E4%B8%8D%E5%90%8C%E7%9A%84%E7%BE%A4%E9%AB%94%E6%9C%83%E6%9C%89%E4%B8%8D%E5%90%8C%E7%9A%84%E5%8F%83%E6%95%B8%E3%80%82%3CBR%20%2F%3E%3CBR%20%2F%3E%E6%88%91%E5%80%91%E6%AD%A3%E5%9C%A8%E5%98%97%E8%A9%A6%E7%A2%BA%E5%AE%9A%E6%B2%BB%E7%99%82%E6%98%AF%E5%90%A6%E6%9C%83%E6%94%B9%E8%AE%8A%E5%87%BA%E7%8F%BE%E6%9B%B2%E7%B7%9A%E7%9A%84%E5%8F%83%E6%95%B8%E3%80%82%20%E4%B8%80%E5%80%8B%E6%88%96%E5%B9%BE%E5%80%8B%E5%8F%83%E6%95%B8%E7%9A%84%E4%BB%BB%E4%BD%95%E9%87%8D%E5%A4%A7%E8%AE%8A%E5%8C%96%E9%83%BD%E6%98%AF%E7%9B%B8%E9%97%9C%E7%9A%84%3CBR%20%2F%3E%3CBR%20%2F%3E%E4%BE%8B%E5%A6%82%EF%BC%9A%E5%A6%82%E6%9E%9C%E6%88%91%E6%94%B9%E8%AE%8A%E9%A3%BC%E9%A4%8A%E7%A9%BA%E9%96%93%E7%9A%84%E7%92%B0%E5%A2%83%E6%BF%95%E5%BA%A6%EF%BC%8C%E7%BE%BD%E5%8C%96%E6%98%AF%E5%90%A6%E6%9C%83%E6%9B%B4%E5%BF%AB%EF%BC%88%E5%B0%8D%E6%8B%90%E9%BB%9E%E3%80%81%E7%94%9F%E9%95%B7%E9%80%9F%E5%BA%A6%E7%9A%84%E5%BD%B1%E9%9F%BF%EF%BC%89%EF%BC%9F%20%E9%80%99%E6%9C%83%E7%B5%A6%E5%80%8B%E4%BA%BA%E5%B8%B6%E4%BE%86%E6%88%90%E6%9C%AC%EF%BC%88%E5%B0%8D%E6%BC%B8%E8%BF%91%E7%B7%9A%E7%9A%84%E5%BD%B1%E9%9F%BF%EF%BC%89%E5%97%8E%EF%BC%9F%3CBR%20%2F%3E%3CBR%20%2F%3E%E7%82%BA%E4%BA%86%E5%9B%9E%E7%AD%94%E9%80%99%E5%80%8B%E5%95%8F%E9%A1%8C%EF%BC%8C%E6%88%91%E5%80%91%E6%AD%A3%E5%9C%A8%E9%80%B2%E8%A1%8C%E5%AF%A6%E9%A9%97%EF%BC%8C%E5%85%B6%E4%B8%AD%20n-1%20%E7%B5%84%E6%8E%A5%E5%8F%97%20n-1%20%E6%B0%B4%E5%B9%B3%E7%9A%84%E6%B2%BB%E7%99%82%EF%BC%8C%E4%B8%80%E7%B5%84%E4%BD%9C%E7%82%BA%E5%B0%8D%E7%85%A7%E7%B5%84%E3%80%82%20%E6%88%91%E5%80%91%E7%94%9F%E6%88%90%20n%20%E6%A2%9D%E2%80%9C%E5%87%BA%E7%8F%BE%E6%9B%B2%E7%B7%9A%E2%80%9D%EF%BC%8C%E6%AF%8F%E6%A2%9D%E6%9B%B2%E7%B7%9A%E9%83%BD%E7%94%B1%E5%85%B6%203%20%E5%8F%83%E6%95%B8%E5%90%91%E9%87%8F%E6%8F%8F%E8%BF%B0%E3%80%82%3CBR%20%2F%3E%E7%94%B1%E6%96%BC%E6%88%91%E5%80%91%E7%9F%A5%E9%81%93%E6%88%91%E5%80%91%E5%8F%AF%E8%83%BD%E6%9C%83%E7%94%A2%E7%94%9F%E9%9A%8A%E5%88%97%E6%88%96%E7%92%B0%E5%A2%83%E5%BD%B1%E9%9F%BF%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%A9%B2%E5%AF%A6%E9%A9%97%E8%A2%AB%E9%87%8D%E8%A4%87%E4%BA%86%20m%20%E6%AC%A1%E3%80%82%20%E5%9C%A8%E5%AF%A6%E9%A9%97%E4%B8%AD%EF%BC%88%E7%94%9F%E6%88%90%20nxm%20%E6%9B%B2%E7%B7%9A%EF%BC%89%EF%BC%8C%E6%AF%8F%E6%A2%9D%E6%9B%B2%E7%B7%9A%E5%9D%87%E6%A0%B9%E6%93%9A%E5%9B%BA%E5%AE%9A%E6%A8%A3%E6%9C%AC%E9%87%8F%EF%BC%88%E9%80%9A%E5%B8%B8%E7%B4%84%E7%82%BA%20400%20%E4%BA%BA%EF%BC%89%E5%BB%BA%E6%A8%A1%E3%80%82%20m%20%E7%9B%B8%E5%B0%8D%E8%BC%83%E5%B0%8F%EF%BC%88%26lt%3B10%EF%BC%89%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3E%E6%88%91%E5%80%91%E5%A6%82%E4%BD%95%E5%BE%97%E5%87%BA%E8%A9%B2%E5%9B%A0%E7%B4%A0%E5%B0%8D%E6%9B%B2%E7%B7%9A%E7%9A%84%E4%B8%80%E5%80%8B%E6%88%96%E5%A4%9A%E5%80%8B%E5%8F%83%E6%95%B8%E6%9C%89%E5%BD%B1%E9%9F%BF%E7%9A%84%E7%B5%90%E8%AB%96%EF%BC%9F%3CBR%20%2F%3E%3CBR%20%2F%3E%20-%20%E4%B8%80%E7%A8%AE%E9%81%B8%E6%93%87%E6%98%AF%E4%BD%BF%E7%94%A8%20JMP%20%E4%B8%AD%E5%B7%B2%E5%8C%85%E5%90%AB%E7%9A%84%E2%80%9C%E7%AD%89%E6%95%88%E6%B8%AC%E8%A9%A6%E2%80%9D%EF%BC%88%E4%B8%A6%E8%A1%8C%E6%80%A7%EF%BC%89%EF%BC%8C%E4%BD%86%E5%AE%83%E5%80%91%E4%B8%80%E6%AC%A1%E5%8F%AA%E5%85%81%E8%A8%B1%E6%AF%94%E8%BC%83%E5%85%A9%E6%A2%9D%E6%9B%B2%E7%B7%9A%E3%80%82%20%E5%AE%83%E5%80%91%E8%A2%AB%E6%8F%8F%E8%BF%B0%E7%82%BA%E9%81%BA%E7%95%99%E6%B8%AC%E8%A9%A6%EF%BC%8C%E4%BC%BC%E4%B9%8E%E6%9C%89%E4%BA%9B%E5%8F%97%E5%88%B0%E8%AD%B4%E8%B2%AC%3CBR%20%2F%3E-%20%E5%96%AE%E7%8D%A8%E5%88%86%E6%9E%90%E6%AF%8F%E5%80%8B%E5%9B%A0%E7%B4%A0%EF%BC%88%E6%96%B9%E5%B7%AE%E5%88%86%E6%9E%90%E5%92%8C%E9%9D%9E%E5%8F%83%E6%95%B8%E7%AD%89%E5%83%B9%E7%89%A9%EF%BC%89%EF%BC%9F%20%E6%9B%B2%E7%B7%9A%E7%9A%84%E5%8F%83%E6%95%B8%E4%B9%8B%E9%96%93%E5%AD%98%E5%9C%A8%E4%B8%80%E4%BA%9B%E7%9B%B8%E9%97%9C%E6%80%A7%EF%BC%88%E4%BD%BF%E7%94%A8%20Pearson%20%E7%9B%B8%E9%97%9C%E6%80%A7%E9%80%B2%E8%A1%8C%E6%B8%AC%E8%A9%A6%EF%BC%8C2%20by%202%EF%BC%89%3CBR%20%2F%3E%20-%20%E4%BD%BF%E7%94%A8%E5%A4%9A%E5%85%83%E6%96%B9%E5%B7%AE%E5%88%86%E6%9E%90%E6%96%B9%E6%B3%95%EF%BC%9F%20%E6%88%91%E7%9C%9F%E7%9A%84%E4%B8%8D%E7%86%9F%E6%82%89%E9%A6%AC%E8%AB%BE%E7%93%A6%EF%BC%8C%E6%89%80%E4%BB%A5%E6%88%91%E6%83%B3%E7%9F%A5%E9%81%93%E5%9C%A8%E6%B7%B1%E5%85%A5%E7%A0%94%E7%A9%B6%E9%80%99%E5%80%8B%E4%B8%BB%E9%A1%8C%E4%B9%8B%E5%89%8D%E9%80%99%E6%98%AF%E5%90%A6%E6%98%AF%E4%B8%80%E5%80%8B%E6%9C%89%E6%95%88%E7%9A%84%E6%96%B9%E6%B3%95%3CBR%20%2F%3E-%20%E5%85%B6%E4%BB%96%E5%BB%BA%E8%AD%B0%EF%BC%9F%3CBR%20%2F%3E%3CBR%20%2F%3E%E5%A6%82%E6%9E%9C%E9%9C%80%E8%A6%81%EF%BC%8C%E6%88%91%E5%8F%AF%E4%BB%A5%E5%88%86%E4%BA%AB%E4%B8%80%E4%BA%9B%E7%A4%BA%E4%BE%8B%E6%95%B8%E6%93%9A%EF%BC%88%E5%8E%9F%E5%A7%8B%E5%87%BA%E7%8F%BE%E6%95%B8%E6%93%9A%E6%88%96%E5%B8%B6%E6%9C%89%E5%8F%83%E6%95%B8%E7%9A%84%E8%A1%A8%E6%A0%BC%EF%BC%89%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-LABS%20id%3D%22lingo-labs-666094%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CLINGO-LABEL%3E%E9%AB%98%E7%B4%9A%E7%B5%B1%E8%A8%88%E5%BB%BA%E6%A8%A1%3C%2FLINGO-LABEL%3E%3CLINGO-LABEL%3E%E5%9F%BA%E7%A4%8E%E6%95%B8%E6%93%9A%E5%88%86%E6%9E%90%E5%92%8C%E5%BB%BA%E6%A8%A1%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E%3CLINGO-SUB%20id%3D%22lingo-sub-666102%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%E5%9B%9E%E5%A4%8D%EF%BC%9A%E5%A6%82%E4%BD%95%E6%AF%94%E8%BC%83%E7%94%B1%203%20%E5%8F%83%E6%95%B8%E9%82%8F%E8%BC%AF%E6%A8%A1%E5%9E%8B%E5%BB%BA%E6%A8%A1%E7%9A%84%E5%A4%9A%E7%B5%84%E6%95%B8%E6%93%9A%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-666102%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%E2%80%9C%E5%88%86%E5%88%A5%E5%88%86%E6%9E%90%E5%90%84%E5%80%8B%E5%9B%A0%E7%B4%A0%E2%80%9D%E6%87%89%E8%A9%B2%E6%98%AF%E2%80%9C%E5%88%86%E5%88%A5%E5%88%86%E6%9E%90%E5%90%84%E5%80%8B%E5%8F%83%E6%95%B8%E2%80%9D%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
Alexa_Guigue
Level I

How to compare several sets of data modeled by a 3-parameter logistic models

Hi, 

I haven't been able to find a lot of resources for this particular issue.

Context:
I am working on insect emergence (after metamorphosis). We are recording the proportion of the initial population emerging over time.
For a group of individuals, this phenomenon always follows a 3-parameter logistic model, but different groups will have different parameters.

We're trying to determine if a treatment will change the parameters of the emergence curve. Any significant changes in one or several of the parameters are relevant

Ex: if I change the ambiant humidity in my rearing space, will the emergence be quicker (impact on inflexion point, growth rate)? Will it come to a cost to the individuals (impact on asymptote)?

To answer this question, we are conducting experiments where n-1 groups receive the n-1 levels of a treatment, and one group is a control. We generate n "emergence curves", each one being described by its 3-parameter vector.
Since we know that we may have cohort or environmental effects, the experiment is replicated m times. Within an experiment (nxm curves generated), each curve is modelled from a fixed sample size (usually about 400 individuals). m is relatively small (<10)

 

How can we conclude that the factor has an effect on one or several parameters of the curves?

- One option would be to use the "equivalence tests" (parallelism) that are already included in JMP, but they only allow the comparison of two curves at a time. They are described as legacy tests and seem somewhat decried 
- Analysing each factor separately (ANOVAs and non-parametric equivalents)? There are some correlations between the parameters of the curves (tested with Pearson's correlation, 2 by 2)
- Using a Manova approach? I'm really not familiar with Manova, so I'd like to know if it would be a valid approach before taking a deep dive in the subject
- Other suggestions?

I can share some sample data if needed (raw emergence data, or a table with parameters) 

1 REPLY 1
Alexa_Guigue
Level I

Re: How to compare several sets of data modeled by a 3-parameter logistic models

"analysing each factor separately" should be "analysing each parameter separately"