cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
The Discovery Summit 2025 Call for Content is open! Submit an abstract today to present at our premier analytics conference.
Get the free JMP Student Edition for qualified students and instructors at degree granting institutions.
%3CLINGO-SUB%20id%3D%22lingo-sub-666094%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%E5%A6%82%E4%BD%95%E6%AF%94%E8%BE%83%E7%94%B1%203%20%E5%8F%82%E6%95%B0%E9%80%BB%E8%BE%91%E6%A8%A1%E5%9E%8B%E5%BB%BA%E6%A8%A1%E7%9A%84%E5%A4%9A%E7%BB%84%E6%95%B0%E6%8D%AE%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-666094%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%E4%BD%A0%E5%A5%BD%EF%BC%8C%3CBR%20%2F%3E%3CBR%20%2F%3E%E6%88%91%E6%97%A0%E6%B3%95%E6%89%BE%E5%88%B0%E9%92%88%E5%AF%B9%E8%BF%99%E4%B8%AA%E7%89%B9%E5%AE%9A%E9%97%AE%E9%A2%98%E7%9A%84%E5%A4%A7%E9%87%8F%E8%B5%84%E6%BA%90%E3%80%82%3CBR%20%2F%3E%3CBR%20%2F%3E%E8%AF%AD%E5%A2%83%EF%BC%9A%3CBR%20%2F%3E%E6%88%91%E6%AD%A3%E5%9C%A8%E7%A0%94%E7%A9%B6%E6%98%86%E8%99%AB%E7%9A%84%E7%BE%BD%E5%8C%96%EF%BC%88%E5%8F%98%E6%80%81%E5%90%8E%EF%BC%89%E3%80%82%20%E6%88%91%E4%BB%AC%E6%AD%A3%E5%9C%A8%E8%AE%B0%E5%BD%95%E9%9A%8F%E7%9D%80%E6%97%B6%E9%97%B4%E7%9A%84%E6%8E%A8%E7%A7%BB%E5%87%BA%E7%8E%B0%E7%9A%84%E5%88%9D%E5%A7%8B%E7%A7%8D%E7%BE%A4%E7%9A%84%E6%AF%94%E4%BE%8B%E3%80%82%3CBR%20%2F%3E%E5%AF%B9%E4%BA%8E%E4%B8%80%E7%BE%A4%E4%B8%AA%E4%BD%93%E6%9D%A5%E8%AF%B4%EF%BC%8C%E8%BF%99%E7%A7%8D%E7%8E%B0%E8%B1%A1%E6%80%BB%E6%98%AF%E9%81%B5%E5%BE%AA%E4%B8%89%E5%8F%82%E6%95%B0%E9%80%BB%E8%BE%91%E6%A8%A1%E5%9E%8B%EF%BC%8C%E4%BD%86%E4%B8%8D%E5%90%8C%E7%9A%84%E7%BE%A4%E4%BD%93%E4%BC%9A%E6%9C%89%E4%B8%8D%E5%90%8C%E7%9A%84%E5%8F%82%E6%95%B0%E3%80%82%3CBR%20%2F%3E%3CBR%20%2F%3E%E6%88%91%E4%BB%AC%E6%AD%A3%E5%9C%A8%E5%B0%9D%E8%AF%95%E7%A1%AE%E5%AE%9A%E6%B2%BB%E7%96%97%E6%98%AF%E5%90%A6%E4%BC%9A%E6%94%B9%E5%8F%98%E5%87%BA%E7%8E%B0%E6%9B%B2%E7%BA%BF%E7%9A%84%E5%8F%82%E6%95%B0%E3%80%82%20%E4%B8%80%E4%B8%AA%E6%88%96%E5%87%A0%E4%B8%AA%E5%8F%82%E6%95%B0%E7%9A%84%E4%BB%BB%E4%BD%95%E9%87%8D%E5%A4%A7%E5%8F%98%E5%8C%96%E9%83%BD%E6%98%AF%E7%9B%B8%E5%85%B3%E7%9A%84%3CBR%20%2F%3E%3CBR%20%2F%3E%E4%BE%8B%E5%A6%82%EF%BC%9A%E5%A6%82%E6%9E%9C%E6%88%91%E6%94%B9%E5%8F%98%E9%A5%B2%E5%85%BB%E7%A9%BA%E9%97%B4%E7%9A%84%E7%8E%AF%E5%A2%83%E6%B9%BF%E5%BA%A6%EF%BC%8C%E7%BE%BD%E5%8C%96%E6%98%AF%E5%90%A6%E4%BC%9A%E6%9B%B4%E5%BF%AB%EF%BC%88%E5%AF%B9%E6%8B%90%E7%82%B9%E3%80%81%E7%94%9F%E9%95%BF%E9%80%9F%E5%BA%A6%E7%9A%84%E5%BD%B1%E5%93%8D%EF%BC%89%EF%BC%9F%20%E8%BF%99%E4%BC%9A%E7%BB%99%E4%B8%AA%E4%BA%BA%E5%B8%A6%E6%9D%A5%E6%88%90%E6%9C%AC%EF%BC%88%E5%AF%B9%E6%B8%90%E8%BF%91%E7%BA%BF%E7%9A%84%E5%BD%B1%E5%93%8D%EF%BC%89%E5%90%97%EF%BC%9F%3CBR%20%2F%3E%3CBR%20%2F%3E%E4%B8%BA%E4%BA%86%E5%9B%9E%E7%AD%94%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%EF%BC%8C%E6%88%91%E4%BB%AC%E6%AD%A3%E5%9C%A8%E8%BF%9B%E8%A1%8C%E5%AE%9E%E9%AA%8C%EF%BC%8C%E5%85%B6%E4%B8%AD%20n-1%20%E7%BB%84%E6%8E%A5%E5%8F%97%20n-1%20%E6%B0%B4%E5%B9%B3%E7%9A%84%E6%B2%BB%E7%96%97%EF%BC%8C%E4%B8%80%E7%BB%84%E4%BD%9C%E4%B8%BA%E5%AF%B9%E7%85%A7%E7%BB%84%E3%80%82%20%E6%88%91%E4%BB%AC%E7%94%9F%E6%88%90%20n%20%E6%9D%A1%E2%80%9C%E5%87%BA%E7%8E%B0%E6%9B%B2%E7%BA%BF%E2%80%9D%EF%BC%8C%E6%AF%8F%E6%9D%A1%E6%9B%B2%E7%BA%BF%E9%83%BD%E7%94%B1%E5%85%B6%203%20%E5%8F%82%E6%95%B0%E5%90%91%E9%87%8F%E6%8F%8F%E8%BF%B0%E3%80%82%3CBR%20%2F%3E%E7%94%B1%E4%BA%8E%E6%88%91%E4%BB%AC%E7%9F%A5%E9%81%93%E6%88%91%E4%BB%AC%E5%8F%AF%E8%83%BD%E4%BC%9A%E4%BA%A7%E7%94%9F%E9%98%9F%E5%88%97%E6%88%96%E7%8E%AF%E5%A2%83%E5%BD%B1%E5%93%8D%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%AF%A5%E5%AE%9E%E9%AA%8C%E8%A2%AB%E9%87%8D%E5%A4%8D%E4%BA%86%20m%20%E6%AC%A1%E3%80%82%20%E5%9C%A8%E5%AE%9E%E9%AA%8C%E4%B8%AD%EF%BC%88%E7%94%9F%E6%88%90%20nxm%20%E6%9B%B2%E7%BA%BF%EF%BC%89%EF%BC%8C%E6%AF%8F%E6%9D%A1%E6%9B%B2%E7%BA%BF%E5%9D%87%E6%A0%B9%E6%8D%AE%E5%9B%BA%E5%AE%9A%E6%A0%B7%E6%9C%AC%E9%87%8F%EF%BC%88%E9%80%9A%E5%B8%B8%E7%BA%A6%E4%B8%BA%20400%20%E4%BA%BA%EF%BC%89%E5%BB%BA%E6%A8%A1%E3%80%82%20m%20%E7%9B%B8%E5%AF%B9%E8%BE%83%E5%B0%8F%EF%BC%88%26lt%3B10%EF%BC%89%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3E%E6%88%91%E4%BB%AC%E5%A6%82%E4%BD%95%E5%BE%97%E5%87%BA%E8%AF%A5%E5%9B%A0%E7%B4%A0%E5%AF%B9%E6%9B%B2%E7%BA%BF%E7%9A%84%E4%B8%80%E4%B8%AA%E6%88%96%E5%A4%9A%E4%B8%AA%E5%8F%82%E6%95%B0%E6%9C%89%E5%BD%B1%E5%93%8D%E7%9A%84%E7%BB%93%E8%AE%BA%EF%BC%9F%3CBR%20%2F%3E%3CBR%20%2F%3E%20-%20%E4%B8%80%E7%A7%8D%E9%80%89%E6%8B%A9%E6%98%AF%E4%BD%BF%E7%94%A8%20JMP%20%E4%B8%AD%E5%B7%B2%E5%8C%85%E5%90%AB%E7%9A%84%E2%80%9C%E7%AD%89%E6%95%88%E6%B5%8B%E8%AF%95%E2%80%9D%EF%BC%88%E5%B9%B6%E8%A1%8C%E6%80%A7%EF%BC%89%EF%BC%8C%E4%BD%86%E5%AE%83%E4%BB%AC%E4%B8%80%E6%AC%A1%E5%8F%AA%E5%85%81%E8%AE%B8%E6%AF%94%E8%BE%83%E4%B8%A4%E6%9D%A1%E6%9B%B2%E7%BA%BF%E3%80%82%20%E5%AE%83%E4%BB%AC%E8%A2%AB%E6%8F%8F%E8%BF%B0%E4%B8%BA%E9%81%97%E7%95%99%E6%B5%8B%E8%AF%95%EF%BC%8C%E4%BC%BC%E4%B9%8E%E6%9C%89%E4%BA%9B%E5%8F%97%E5%88%B0%E8%B0%B4%E8%B4%A3%3CBR%20%2F%3E-%20%E5%8D%95%E7%8B%AC%E5%88%86%E6%9E%90%E6%AF%8F%E4%B8%AA%E5%9B%A0%E7%B4%A0%EF%BC%88%E6%96%B9%E5%B7%AE%E5%88%86%E6%9E%90%E5%92%8C%E9%9D%9E%E5%8F%82%E6%95%B0%E7%AD%89%E4%BB%B7%E7%89%A9%EF%BC%89%EF%BC%9F%20%E6%9B%B2%E7%BA%BF%E7%9A%84%E5%8F%82%E6%95%B0%E4%B9%8B%E9%97%B4%E5%AD%98%E5%9C%A8%E4%B8%80%E4%BA%9B%E7%9B%B8%E5%85%B3%E6%80%A7%EF%BC%88%E4%BD%BF%E7%94%A8%20Pearson%20%E7%9B%B8%E5%85%B3%E6%80%A7%E8%BF%9B%E8%A1%8C%E6%B5%8B%E8%AF%95%EF%BC%8C2%20by%202%EF%BC%89%3CBR%20%2F%3E%20-%20%E4%BD%BF%E7%94%A8%E5%A4%9A%E5%85%83%E6%96%B9%E5%B7%AE%E5%88%86%E6%9E%90%E6%96%B9%E6%B3%95%EF%BC%9F%20%E6%88%91%E7%9C%9F%E7%9A%84%E4%B8%8D%E7%86%9F%E6%82%89%E9%A9%AC%E8%AF%BA%E7%93%A6%EF%BC%8C%E6%89%80%E4%BB%A5%E6%88%91%E6%83%B3%E7%9F%A5%E9%81%93%E5%9C%A8%E6%B7%B1%E5%85%A5%E7%A0%94%E7%A9%B6%E8%BF%99%E4%B8%AA%E4%B8%BB%E9%A2%98%E4%B9%8B%E5%89%8D%E8%BF%99%E6%98%AF%E5%90%A6%E6%98%AF%E4%B8%80%E4%B8%AA%E6%9C%89%E6%95%88%E7%9A%84%E6%96%B9%E6%B3%95%3CBR%20%2F%3E-%20%E5%85%B6%E4%BB%96%E5%BB%BA%E8%AE%AE%EF%BC%9F%3CBR%20%2F%3E%3CBR%20%2F%3E%E5%A6%82%E6%9E%9C%E9%9C%80%E8%A6%81%EF%BC%8C%E6%88%91%E5%8F%AF%E4%BB%A5%E5%88%86%E4%BA%AB%E4%B8%80%E4%BA%9B%E7%A4%BA%E4%BE%8B%E6%95%B0%E6%8D%AE%EF%BC%88%E5%8E%9F%E5%A7%8B%E5%87%BA%E7%8E%B0%E6%95%B0%E6%8D%AE%E6%88%96%E5%B8%A6%E6%9C%89%E5%8F%82%E6%95%B0%E7%9A%84%E8%A1%A8%E6%A0%BC%EF%BC%89%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-LABS%20id%3D%22lingo-labs-666094%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CLINGO-LABEL%3E%E9%AB%98%E7%BA%A7%E7%BB%9F%E8%AE%A1%E5%BB%BA%E6%A8%A1%3C%2FLINGO-LABEL%3E%3CLINGO-LABEL%3E%E5%9F%BA%E7%A1%80%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90%E5%92%8C%E5%BB%BA%E6%A8%A1%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E%3CLINGO-SUB%20id%3D%22lingo-sub-666102%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%E5%9B%9E%E5%A4%8D%EF%BC%9A%E5%A6%82%E4%BD%95%E6%AF%94%E8%BE%83%E7%94%B1%203%20%E5%8F%82%E6%95%B0%E9%80%BB%E8%BE%91%E6%A8%A1%E5%9E%8B%E5%BB%BA%E6%A8%A1%E7%9A%84%E5%A4%9A%E7%BB%84%E6%95%B0%E6%8D%AE%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-666102%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%E2%80%9C%E5%88%86%E5%88%AB%E5%88%86%E6%9E%90%E5%90%84%E4%B8%AA%E5%9B%A0%E7%B4%A0%E2%80%9D%E5%BA%94%E8%AF%A5%E6%98%AF%E2%80%9C%E5%88%86%E5%88%AB%E5%88%86%E6%9E%90%E5%90%84%E4%B8%AA%E5%8F%82%E6%95%B0%E2%80%9D%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
Alexa_Guigue
Level I

How to compare several sets of data modeled by a 3-parameter logistic models

Hi, 

I haven't been able to find a lot of resources for this particular issue.

Context:
I am working on insect emergence (after metamorphosis). We are recording the proportion of the initial population emerging over time.
For a group of individuals, this phenomenon always follows a 3-parameter logistic model, but different groups will have different parameters.

We're trying to determine if a treatment will change the parameters of the emergence curve. Any significant changes in one or several of the parameters are relevant

Ex: if I change the ambiant humidity in my rearing space, will the emergence be quicker (impact on inflexion point, growth rate)? Will it come to a cost to the individuals (impact on asymptote)?

To answer this question, we are conducting experiments where n-1 groups receive the n-1 levels of a treatment, and one group is a control. We generate n "emergence curves", each one being described by its 3-parameter vector.
Since we know that we may have cohort or environmental effects, the experiment is replicated m times. Within an experiment (nxm curves generated), each curve is modelled from a fixed sample size (usually about 400 individuals). m is relatively small (<10)

 

How can we conclude that the factor has an effect on one or several parameters of the curves?

- One option would be to use the "equivalence tests" (parallelism) that are already included in JMP, but they only allow the comparison of two curves at a time. They are described as legacy tests and seem somewhat decried 
- Analysing each factor separately (ANOVAs and non-parametric equivalents)? There are some correlations between the parameters of the curves (tested with Pearson's correlation, 2 by 2)
- Using a Manova approach? I'm really not familiar with Manova, so I'd like to know if it would be a valid approach before taking a deep dive in the subject
- Other suggestions?

I can share some sample data if needed (raw emergence data, or a table with parameters) 

1 REPLY 1
Alexa_Guigue
Level I

Re: How to compare several sets of data modeled by a 3-parameter logistic models

"analysing each factor separately" should be "analysing each parameter separately"

Recommended Articles