cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Try the Materials Informatics Toolkit, which is designed to easily handle SMILES data. This and other helpful add-ins are available in the JMP® Marketplace
%3CLINGO-SUB%20id%3D%22lingo-sub-666094%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E3%20%EB%A7%A4%EA%B0%9C%EB%B3%80%EC%88%98%20%EB%AC%BC%EB%A5%98%20%EB%AA%A8%EB%8D%B8%EB%A1%9C%20%EB%AA%A8%EB%8D%B8%EB%A7%81%EB%90%9C%20%EC%97%AC%EB%9F%AC%20%EB%8D%B0%EC%9D%B4%ED%84%B0%20%EC%84%B8%ED%8A%B8%EB%A5%BC%20%EB%B9%84%EA%B5%90%ED%95%98%EB%8A%94%20%EB%B0%A9%EB%B2%95%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-666094%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%EC%95%88%EB%85%95%2C%3CBR%20%2F%3E%3CBR%20%2F%3E%20%EC%9D%B4%20%ED%8A%B9%EC%A0%95%20%EB%AC%B8%EC%A0%9C%EC%97%90%20%EB%8C%80%ED%95%9C%20%EB%A7%8E%EC%9D%80%20%EB%A6%AC%EC%86%8C%EC%8A%A4%EB%A5%BC%20%EC%B0%BE%EC%9D%84%20%EC%88%98%20%EC%97%86%EC%97%88%EC%8A%B5%EB%8B%88%EB%8B%A4.%3CBR%20%2F%3E%3CBR%20%2F%3E%20%EB%AC%B8%EB%A7%A5%3A%3CBR%20%2F%3E%20%EB%82%98%EB%8A%94%20%EA%B3%A4%EC%B6%A9%20%EC%B6%9C%ED%98%84%20(%EB%B3%80%ED%83%9C%20%ED%9B%84)%EC%97%90%20%EB%8C%80%ED%95%B4%20%EC%97%B0%EA%B5%AC%ED%95%98%EA%B3%A0%20%EC%9E%88%EC%8A%B5%EB%8B%88%EB%8B%A4.%20%EC%9A%B0%EB%A6%AC%EB%8A%94%20%EC%8B%9C%EA%B0%84%EC%9D%B4%20%EC%A7%80%EB%82%A8%EC%97%90%20%EB%94%B0%EB%9D%BC%20%EB%82%98%ED%83%80%EB%82%98%EB%8A%94%20%EC%B4%88%EA%B8%B0%20%EC%9D%B8%EA%B5%AC%EC%9D%98%20%EB%B9%84%EC%9C%A8%EC%9D%84%20%EA%B8%B0%EB%A1%9D%ED%95%98%EA%B3%A0%20%EC%9E%88%EC%8A%B5%EB%8B%88%EB%8B%A4.%3CBR%20%2F%3E%20%EA%B0%9C%EC%9D%B8%20%EA%B7%B8%EB%A3%B9%EC%9D%98%20%EA%B2%BD%EC%9A%B0%20%EC%9D%B4%20%ED%98%84%EC%83%81%EC%9D%80%20%ED%95%AD%EC%83%81%203%20%EB%A7%A4%EA%B0%9C%EB%B3%80%EC%88%98%20%EB%A1%9C%EC%A7%80%EC%8A%A4%ED%8B%B1%20%EB%AA%A8%EB%8D%B8%EC%9D%84%20%EB%94%B0%EB%A5%B4%EC%A7%80%EB%A7%8C%20%EB%8B%A4%EB%A5%B8%20%EA%B7%B8%EB%A3%B9%EC%9D%80%20%EB%8B%A4%EB%A5%B8%20%EB%A7%A4%EA%B0%9C%EB%B3%80%EC%88%98%EB%A5%BC%20%EA%B0%96%EC%8A%B5%EB%8B%88%EB%8B%A4.%3CBR%20%2F%3E%3CBR%20%2F%3E%20%EC%9A%B0%EB%A6%AC%EB%8A%94%20%EC%B9%98%EB%A3%8C%EA%B0%80%20%EC%B6%9C%ED%98%84%20%EA%B3%A1%EC%84%A0%EC%9D%98%20%EB%A7%A4%EA%B0%9C%20%EB%B3%80%EC%88%98%EB%A5%BC%20%EB%B3%80%EA%B2%BD%ED%95%98%EB%8A%94%EC%A7%80%20%ED%99%95%EC%9D%B8%ED%95%98%EB%A0%A4%EA%B3%A0%20%ED%95%A9%EB%8B%88%EB%8B%A4.%20%ED%95%98%EB%82%98%20%EB%98%90%EB%8A%94%20%EC%97%AC%EB%9F%AC%20%EB%A7%A4%EA%B0%9C%EB%B3%80%EC%88%98%EC%9D%98%20%EC%A4%91%EC%9A%94%ED%95%9C%20%EB%B3%80%EA%B2%BD%20%EC%82%AC%ED%95%AD%EC%9D%80%20%EA%B4%80%EB%A0%A8%EC%9D%B4%20%EC%9E%88%EC%8A%B5%EB%8B%88%EB%8B%A4.%3CBR%20%2F%3E%3CBR%20%2F%3E%20%EC%98%88%3A%20%EC%82%AC%EC%9C%A1%20%EA%B3%B5%EA%B0%84%EC%9D%98%20%EC%A3%BC%EB%B3%80%20%EC%8A%B5%EB%8F%84%EB%A5%BC%20%EB%B3%80%EA%B2%BD%ED%95%98%EB%A9%B4%20%EC%B6%9C%ED%98%84%EC%9D%B4%20%EB%8D%94%20%EB%B9%A8%EB%9D%BC%EC%A7%88%EA%B9%8C%EC%9A%94(%EB%B3%80%EA%B3%A1%EC%A0%90%2C%20%EC%84%B1%EC%9E%A5%20%EC%86%8D%EB%8F%84%EC%97%90%20%EB%AF%B8%EC%B9%98%EB%8A%94%20%EC%98%81%ED%96%A5)%3F%20%EA%B0%9C%EC%9D%B8%EC%97%90%EA%B2%8C%20%EB%B9%84%EC%9A%A9%EC%9D%B4%20%EB%B0%9C%EC%83%9D%ED%95%A9%EB%8B%88%EA%B9%8C(%EC%A0%90%EA%B7%BC%EC%84%A0%EC%97%90%20%EB%AF%B8%EC%B9%98%EB%8A%94%20%EC%98%81%ED%96%A5)%3F%3CBR%20%2F%3E%3CBR%20%2F%3E%20%EC%9D%B4%20%EC%A7%88%EB%AC%B8%EC%97%90%20%EB%8B%B5%ED%95%98%EA%B8%B0%20%EC%9C%84%ED%95%B4%20%EC%9A%B0%EB%A6%AC%EB%8A%94%20n-1%20%EA%B7%B8%EB%A3%B9%EC%9D%B4%20n-1%20%EC%88%98%EC%A4%80%EC%9D%98%20%EC%B2%98%EB%A6%AC%EB%A5%BC%20%EB%B0%9B%EA%B3%A0%20%ED%95%9C%20%EA%B7%B8%EB%A3%B9%EC%9D%80%20%EB%8C%80%EC%A1%B0%EA%B5%B0%EC%9D%B4%20%EB%90%98%EB%8A%94%20%EC%8B%A4%ED%97%98%EC%9D%84%20%EC%88%98%ED%96%89%ED%95%98%EA%B3%A0%20%EC%9E%88%EC%8A%B5%EB%8B%88%EB%8B%A4.%20%EC%9A%B0%EB%A6%AC%EB%8A%94%20n%EA%B0%9C%EC%9D%98%20%22%EB%B0%9C%ED%98%84%20%EA%B3%A1%EC%84%A0%22%EC%9D%84%20%EC%83%9D%EC%84%B1%ED%95%98%EB%A9%B0%2C%20%EA%B0%81%EA%B0%81%EC%9D%80%203-%ED%8C%8C%EB%9D%BC%EB%AF%B8%ED%84%B0%20%EB%B2%A1%ED%84%B0%EB%A1%9C%20%EC%84%A4%EB%AA%85%EB%90%A9%EB%8B%88%EB%8B%A4.%3CBR%20%2F%3E%20%EC%BD%94%ED%98%B8%ED%8A%B8%20%EB%98%90%EB%8A%94%20%ED%99%98%EA%B2%BD%20%EC%98%81%ED%96%A5%EC%9D%B4%20%EC%9E%88%EC%9D%84%20%EC%88%98%20%EC%9E%88%EC%9D%8C%EC%9D%84%20%EC%95%8C%EA%B3%A0%20%EC%9E%88%EC%9C%BC%EB%AF%80%EB%A1%9C%20%EC%8B%A4%ED%97%98%EC%9D%84%20m%EB%B2%88%20%EB%B0%98%EB%B3%B5%ED%95%A9%EB%8B%88%EB%8B%A4.%20%EC%8B%A4%ED%97%98(%EC%83%9D%EC%84%B1%EB%90%9C%20nxm%20%EA%B3%A1%EC%84%A0)%20%EB%82%B4%EC%97%90%EC%84%9C%20%EA%B0%81%20%EA%B3%A1%EC%84%A0%EC%9D%80%20%EA%B3%A0%EC%A0%95%EB%90%9C%20%EC%83%98%ED%94%8C%20%ED%81%AC%EA%B8%B0(%EC%9D%BC%EB%B0%98%EC%A0%81%EC%9C%BC%EB%A1%9C%20%EC%95%BD%20400%EB%AA%85%EC%9D%98%20%EA%B0%9C%EC%9D%B8)%EC%97%90%EC%84%9C%20%EB%AA%A8%EB%8D%B8%EB%A7%81%EB%90%A9%EB%8B%88%EB%8B%A4.%20m%EC%9D%80%20%EC%83%81%EB%8C%80%EC%A0%81%EC%9C%BC%EB%A1%9C%20%EC%9E%91%EC%8A%B5%EB%8B%88%EB%8B%A4(%26lt%3B10)%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3E%EC%9A%94%EC%9D%B8%EC%9D%B4%20%EA%B3%A1%EC%84%A0%EC%9D%98%20%ED%95%98%EB%82%98%20%EB%98%90%EB%8A%94%20%EC%97%AC%EB%9F%AC%20%EB%A7%A4%EA%B0%9C%EB%B3%80%EC%88%98%EC%97%90%20%EC%98%81%ED%96%A5%EC%9D%84%20%EB%AF%B8%EC%B9%9C%EB%8B%A4%EB%8A%94%20%EA%B2%B0%EB%A1%A0%EC%9D%84%20%EC%96%B4%EB%96%BB%EA%B2%8C%20%EB%82%B4%EB%A6%B4%20%EC%88%98%20%EC%9E%88%EC%8A%B5%EB%8B%88%EA%B9%8C%3F%3CBR%20%2F%3E%3CBR%20%2F%3E%20-%20%ED%95%9C%20%EA%B0%80%EC%A7%80%20%EC%98%B5%EC%85%98%EC%9D%80%20JMP%EC%97%90%20%EC%9D%B4%EB%AF%B8%20%ED%8F%AC%ED%95%A8%EB%90%98%EC%96%B4%20%EC%9E%88%EB%8A%94%20%22%EB%8F%99%EB%93%B1%EC%84%B1%20%ED%85%8C%EC%8A%A4%ED%8A%B8%22(%ED%8F%89%ED%96%89%EC%84%B1)%EB%A5%BC%20%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94%20%EA%B2%83%EC%9D%B4%EC%A7%80%EB%A7%8C%20%ED%95%9C%20%EB%B2%88%EC%97%90%20%EB%91%90%20%EA%B0%9C%EC%9D%98%20%EA%B3%A1%EC%84%A0%EB%A7%8C%20%EB%B9%84%EA%B5%90%ED%95%A0%20%EC%88%98%20%EC%9E%88%EC%8A%B5%EB%8B%88%EB%8B%A4.%20%EA%B7%B8%EB%93%A4%EC%9D%80%20%EB%A0%88%EA%B1%B0%EC%8B%9C%20%ED%85%8C%EC%8A%A4%ED%8A%B8%EB%A1%9C%20%EC%84%A4%EB%AA%85%EB%90%98%EB%A9%B0%20%EB%8B%A4%EC%86%8C%20%EB%B9%84%EB%82%9C%EB%B0%9B%EB%8A%94%20%EA%B2%83%EC%B2%98%EB%9F%BC%20%EB%B3%B4%EC%9E%85%EB%8B%88%EB%8B%A4.%3CBR%20%2F%3E%20-%20%EA%B0%81%20%EC%9A%94%EC%86%8C%EB%A5%BC%20%EA%B0%9C%EB%B3%84%EC%A0%81%EC%9C%BC%EB%A1%9C%20%EB%B6%84%EC%84%9D(ANOVA%20%EB%B0%8F%20%EB%B9%84%EB%AA%A8%EC%88%98%EC%A0%81%20%EB%93%B1%EA%B0%80%EB%AC%BC)%3F%20%EA%B3%A1%EC%84%A0%EC%9D%98%20%EB%A7%A4%EA%B0%9C%EB%B3%80%EC%88%98%20%EC%82%AC%EC%9D%B4%EC%97%90%20%EC%95%BD%EA%B0%84%EC%9D%98%20%EC%83%81%EA%B4%80%EA%B4%80%EA%B3%84%EA%B0%80%20%EC%9E%88%EC%8A%B5%EB%8B%88%EB%8B%A4(Pearson%EC%9D%98%20%EC%83%81%EA%B4%80%EA%B4%80%EA%B3%84%EB%A1%9C%20%ED%85%8C%EC%8A%A4%ED%8A%B8%EB%90%A8%2C%202%20x%202).%3CBR%20%2F%3E%20-%20Manova%20%EC%A0%91%EA%B7%BC%20%EB%B0%A9%EC%8B%9D%EC%9D%84%20%EC%82%AC%EC%9A%A9%ED%95%A9%EB%8B%88%EA%B9%8C%3F%20%EB%82%98%EB%8A%94%20Manova%EC%97%90%20%EB%8C%80%ED%95%B4%20%EC%9E%98%20%EC%95%8C%EC%A7%80%20%EB%AA%BB%ED%95%98%EB%AF%80%EB%A1%9C%20%EC%A3%BC%EC%A0%9C%EC%97%90%20%EB%8C%80%ED%95%B4%20%EC%9E%90%EC%84%B8%ED%9E%88%20%EC%95%8C%EC%95%84%EB%B3%B4%EA%B8%B0%20%EC%A0%84%EC%97%90%20%EC%9C%A0%ED%9A%A8%ED%95%9C%20%EC%A0%91%EA%B7%BC%20%EB%B0%A9%EC%8B%9D%EC%9D%B8%EC%A7%80%20%EC%95%8C%EA%B3%A0%20%EC%8B%B6%EC%8A%B5%EB%8B%88%EB%8B%A4.%3CBR%20%2F%3E%20-%20%EB%8B%A4%EB%A5%B8%20%EC%A0%9C%EC%95%88%3F%3CBR%20%2F%3E%3CBR%20%2F%3E%20%ED%95%84%EC%9A%94%ED%95%9C%20%EA%B2%BD%EC%9A%B0%20%EC%9D%BC%EB%B6%80%20%EC%83%98%ED%94%8C%20%EB%8D%B0%EC%9D%B4%ED%84%B0%EB%A5%BC%20%EA%B3%B5%EC%9C%A0%ED%95%A0%20%EC%88%98%20%EC%9E%88%EC%8A%B5%EB%8B%88%EB%8B%A4(%EC%9B%90%EC%8B%9C%20%EC%B6%9C%ED%98%84%20%EB%8D%B0%EC%9D%B4%ED%84%B0%20%EB%98%90%EB%8A%94%20%EB%A7%A4%EA%B0%9C%EB%B3%80%EC%88%98%EA%B0%80%20%EC%9E%88%EB%8A%94%20%ED%85%8C%EC%9D%B4%EB%B8%94).%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-LABS%20id%3D%22lingo-labs-666094%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CLINGO-LABEL%3E%EA%B3%A0%EA%B8%89%20%ED%86%B5%EA%B3%84%20%EB%AA%A8%EB%8D%B8%EB%A7%81%3C%2FLINGO-LABEL%3E%3CLINGO-LABEL%3E%EA%B8%B0%EB%B3%B8%20%EB%8D%B0%EC%9D%B4%ED%84%B0%20%EB%B6%84%EC%84%9D%20%EB%B0%8F%20%EB%AA%A8%EB%8D%B8%EB%A7%81%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E%3CLINGO-SUB%20id%3D%22lingo-sub-666102%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%203-%ED%8C%8C%EB%9D%BC%EB%AF%B8%ED%84%B0%20%EB%AC%BC%EB%A5%98%20%EB%AA%A8%EB%8D%B8%EB%A1%9C%20%EB%AA%A8%EB%8D%B8%EB%A7%81%EB%90%9C%20%EC%97%AC%EB%9F%AC%20%EB%8D%B0%EC%9D%B4%ED%84%B0%20%EC%84%B8%ED%8A%B8%EB%A5%BC%20%EB%B9%84%EA%B5%90%ED%95%98%EB%8A%94%20%EB%B0%A9%EB%B2%95%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-666102%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%22%EA%B0%81%20%EC%9A%94%EC%86%8C%EB%A5%BC%20%EA%B0%9C%EB%B3%84%EC%A0%81%EC%9C%BC%EB%A1%9C%20%EB%B6%84%EC%84%9D%22%EC%9D%80%20%22%EA%B0%81%20%EB%A7%A4%EA%B0%9C%EB%B3%80%EC%88%98%EB%A5%BC%20%EA%B0%9C%EB%B3%84%EC%A0%81%EC%9C%BC%EB%A1%9C%20%EB%B6%84%EC%84%9D%22%ED%95%B4%EC%95%BC%20%ED%95%A9%EB%8B%88%EB%8B%A4.%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
Alexa_Guigue
Level I

How to compare several sets of data modeled by a 3-parameter logistic models

Hi, 

I haven't been able to find a lot of resources for this particular issue.

Context:
I am working on insect emergence (after metamorphosis). We are recording the proportion of the initial population emerging over time.
For a group of individuals, this phenomenon always follows a 3-parameter logistic model, but different groups will have different parameters.

We're trying to determine if a treatment will change the parameters of the emergence curve. Any significant changes in one or several of the parameters are relevant

Ex: if I change the ambiant humidity in my rearing space, will the emergence be quicker (impact on inflexion point, growth rate)? Will it come to a cost to the individuals (impact on asymptote)?

To answer this question, we are conducting experiments where n-1 groups receive the n-1 levels of a treatment, and one group is a control. We generate n "emergence curves", each one being described by its 3-parameter vector.
Since we know that we may have cohort or environmental effects, the experiment is replicated m times. Within an experiment (nxm curves generated), each curve is modelled from a fixed sample size (usually about 400 individuals). m is relatively small (<10)

 

How can we conclude that the factor has an effect on one or several parameters of the curves?

- One option would be to use the "equivalence tests" (parallelism) that are already included in JMP, but they only allow the comparison of two curves at a time. They are described as legacy tests and seem somewhat decried 
- Analysing each factor separately (ANOVAs and non-parametric equivalents)? There are some correlations between the parameters of the curves (tested with Pearson's correlation, 2 by 2)
- Using a Manova approach? I'm really not familiar with Manova, so I'd like to know if it would be a valid approach before taking a deep dive in the subject
- Other suggestions?

I can share some sample data if needed (raw emergence data, or a table with parameters) 

1 REPLY 1
Alexa_Guigue
Level I

Re: How to compare several sets of data modeled by a 3-parameter logistic models

"analysing each factor separately" should be "analysing each parameter separately"