cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
%3CLINGO-SUB%20id%3D%22lingo-sub-236281%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EC%C3%B3mo%20calcular%20el%20producto%20cruzado%20vectorial%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-236281%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ESeg%C3%BAn%20la%20documentaci%C3%B3n%2C%20parece%20que%20el%20operador%20*%20realizar%C3%A1%20un%20producto%20cruzado%20y%20%3B*%20realizar%C3%A1%20un%20producto%20escalar.%20Quiero%20usar%20un%20producto%20cruzado%20para%20determinar%20el%20vector%20normal%20a%20un%20par%20de%20vectores%20conocidos%20como%20este%3A%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3Ep1%20%3D%20%5B1%2C%202%2C%204%5D%3B%0Ap2%20%3D%20%5B2%2C%201%2C%204%5D%3B%0Ap3%20%3D%20%5B2%2C%202%2C%204%5D%3B%0A%0Av1%20%3D%20p3%20-%20p1%3B%0Av2%20%3D%20p2%20-%20p1%3B%0A%0AxProd%20%3D%20v1*v2%3B%3C%2FCODE%3E%3C%2FPRE%3E%3CP%3E3%20puntos%20definen%20un%20plano%2C%20dos%20vectores%20tomados%20de%20esos%20puntos%20hacen%20lo%20mismo%2C%20el%20producto%20vectorial%20debe%20dar%20el%20vector%20normal%20de%20ese%20plano.%20El%20problema%20parece%20ser%20que%20las%20dimensiones%20de%20las%20dos%20matrices%20que%20se%20multiplican%20(v1%20y%20v2)%20no%20coinciden%3A%20nRows(v1)%20debe%20ser%20igual%20a%20nCols(v2).%20Puedo%20implementar%20esto%20manualmente%20con%20una%20f%C3%B3rmula%20simplificada%20para%20productos%20cruzados%20vectoriales%2C%20pero%20%C2%BFalguien%20sabe%20c%C3%B3mo%20formatear%20esto%20de%20manera%20diferente%20para%20trabajar%20con%20la%20multiplicaci%C3%B3n%20de%20matrices%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-611821%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20C%C3%B3mo%20calcular%20el%20producto%20cruzado%20vectorial%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-611821%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EEl%20rendimiento%20inferior%20no%20sorprende...%20gracias%20por%20insertar%20el%20ajuste%20del%20letrero.%20Omit%C3%AD%20el%20%22tablero%20de%20ajedrez%22%20sin%20darme%20cuenta.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EEn%20mi%20opini%C3%B3n%2C%20este%20es%20uno%20de%20esos%20casos%20en%20los%20que%20se%20aplica%20%22solo%20porque%20puedas%2C%20no%20significa%20que%20debas%22...%20%7Bgenial%2C%20divertido%2C%20breve%7D%20no%20supera%20a%20%7Bcomprensible%2C%20mantenible%2C%20r%C3%A1pido%7D.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-611720%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20C%C3%B3mo%20calcular%20el%20producto%20cruzado%20vectorial%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-611720%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F3552%22%20target%3D%22_blank%22%3E%40brady_brady%3C%2FA%3E%20%C2%A1Fresco!%20Necesita%20un%20ajuste%20si%20vas%20a%20usarlo%3A%3C%2FP%3E%0A%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3E%20i%20%3D%201%3B%0A%20j%20%3D%20-1%3B%0A%20J(%203%2C%201%2C%20(j%20*%3D%20-1)%20*%20Det(%20(v1%20%7C%7C%20v2)%5BRemove(%20%5B1%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%3B%3C%2FCODE%3E%3C%2FPRE%3E%0A%3CP%3E%3CCODE%20class%3D%22%20language-jsl%22%3E%3C%2FCODE%3E%3CA%20href%3D%22https%3A%2F%2Fmathinsight.org%2Fcross_product_formula%22%20target%3D%22_blank%22%20rel%3D%22nofollow%20noopener%20noreferrer%22%3Ehttps%3A%2F%2Fmathinsight.org%2Fcross_product_formula%3C%2FA%3E%20muestra%20c%C3%B3mo%20el%20elemento%20medio%20debe%20ser%20negativo.Arriba%2C%20j%20alternar%C3%A1%20el%20signo%20(1%2C%20-1%2C%201)%20y%20i%20aumentar%C3%A1%20(1%2C%202%2C%203).%20La%20funci%C3%B3n%20J(...)%20tiene%20un%20bucle%20impl%C3%ADcito%20que%20eval%C3%BAa%20el%20tercer%20argumento%20de%20cada%20elemento.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELa%20sencilla%20f%C3%B3rmula%20corregida%20de%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F11962%22%20target%3D%22_blank%22%3E%20%40klk%3C%2FA%3E%20es%20aproximadamente%203%20veces%20m%C3%A1s%20r%C3%A1pido%20y%20aproximadamente%20N%20veces%20m%C3%A1s%20f%C3%A1cil%20de%20entender.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EC%C3%B3digo%20de%20prueba.%3C%2FP%3E%0A%3CDIV%20class%3D%22lia-spoiler-container%22%3E%3CA%20class%3D%22lia-spoiler-link%22%20href%3D%22%23%22%20rel%3D%22nofollow%20noopener%20noreferrer%22%20target%3D%22_blank%22%3EVer%20m%C3%A1s...%3C%2FA%3E%3CNOSCRIPT%3E%3CDIV%20class%3D%22lia-spoiler-content%22%3E%3CBR%20%2F%3E%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3Ev1%20%3D%20%5B0%2C%200%2C%201%5D%3B%0Av2%20%3D%20%5B0%2C%201%2C%200%5D%3B%0A%0Astart%20%3D%20HP%20Time()%3B%0AFor(%20t%20%3D%201%2C%20t%20%26lt%3B%201e6%2C%20t%20%2B%3D%201%2C%0A%20i%20%3D%201%3B%0A%20j%20%3D%20-1%3B%0A%20J(%203%2C%201%2C%20(j%20*%3D%20-1)%20*%20Det(%20(v1%20%7C%7C%20v2)%5BRemove(%20%5B1%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%3B%0A)%3B%0Astop%20%3D%20HP%20Time()%3B%0AShow(%20(stop%20-%20start)%20%2F%201e6%20)%3B%2F%2F9.3s%0A%0A%0Astart%20%3D%20HP%20Time()%3B%0AFor(%20t%20%3D%201%2C%20t%20%26lt%3B%201e6%2C%20t%20%2B%3D%201%2C%0A%20Matrix(%20%7Bv1%5B2%5D%20*%20v2%5B3%5D%20-%20v1%5B3%5D%20*%20v2%5B2%5D%2C%20v1%5B3%5D%20*%20v2%5B1%5D%20-%20v1%5B1%5D%20*%20v2%5B3%5D%2C%20v1%5B1%5D%20*%20v2%5B2%5D%20-%20v1%5B2%5D%20*%20v2%5B1%5D%7D%20)%0A)%3B%0Astop%20%3D%20HP%20Time()%3B%0AShow(%20(stop%20-%20start)%20%2F%201e6%20)%3B%2F%2F3.2s%0A%0A%0AFor(%20q%20%3D%201%2C%20q%20%26lt%3B%2010000%2C%20q%20%2B%3D%201%2C%0A%20v1%20%3D%20J(%203%2C%201%2C%20Random%20Uniform(%20-1%2C%201%20)%20)%3B%0A%20v2%20%3D%20J(%203%2C%201%2C%20Random%20Uniform(%20-1%2C%201%20)%20)%3B%0A%20If(%0A%20%20All(%0A%20%20%20Round(%20Matrix(%20%7Bv1%5B2%5D%20*%20v2%5B3%5D%20-%20v1%5B3%5D%20*%20v2%5B2%5D%2C%20v1%5B3%5D%20*%20v2%5B1%5D%20-%20v1%5B1%5D%20*%20v2%5B3%5D%2C%20v1%5B1%5D%20*%20v2%5B2%5D%20-%20v1%5B2%5D%20*%20v2%5B1%5D%7D%20)%2C%2010%20)%20%2F%2F%0A%20%20%20%3D%3D%20%2F%2F%0A%20%20%20(i%20%3D%201%3B%20j%20%3D%20-1%20%3B%20Round(%20J(%203%2C%201%2C%20(j%20*%3D%20-1)%20*%20Det(%20(v1%20%7C%7C%20v2)%5BRemove(%20%5B1%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%2C%2010%20)%20%3B%20)%20%2F%2F%0A%20%20)%20%3D%3D%200%2F%2F%0A%20%2C%20%2F%2F%0A%20%20Throw(%20Char(%20q%20)%20)%0A%20)%3B%0A)%3B%3C%2FCODE%3E%3C%2FPRE%3ECuriosamente%2C%20redondear%20a%2011%20lugares%20en%20ocasiones%20no%20coincide%20con%20los%20resultados.%20Probablemente%20vectores%20casi%20colineales.%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FDIV%3E%3CNOSCRIPT%3E%3CDIV%20class%3D%22lia-spoiler-noscript-content%22%3Ev1%20%3D%20%5B0%2C%200%2C%201%5D%3B%20v2%20%3D%20%5B0%2C%201%2C%200%5D%3B%20inicio%20%3D%20Tiempo%20de%20HP()%3B%20For(%20t%20%3D%201%2C%20t%20%26lt%3B%201e6%2C%20t%20%2B%3D%201%2C%20i%20%3D%201%3B%20j%20%3D%20-1%3B%20J(%203%2C%201%2C%20(j%20*%3D%20-1)%20*%20Det(%20(v1%20%7C%7C%20v2)%5BRemove(%20%5B%201%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%3B%20)%3B%20detener%20%3D%20Tiempo%20de%20HP()%3B%20Show(%20(detener%20-%20iniciar)%20%2F%201e6%20)%3B%2F%2F9.3s%20inicio%20%3D%20HP%20Time()%3B%20Para%20(t%20%3D%201%2C%20t%20%26lt%3B%201e6%2C%20t%20%2B%3D%201%2C%20Matriz%20(%7Bv1%5B2%5D%20*%20v2%5B3%5D%20-%20v1%5B3%5D%20*%20v2%5B2%5D%2C%20v1%5B3%5D%20*%20v2%5B1%5D%20-%20v1%5B%201%5D%20*%20v2%5B3%5D%2C%20v1%5B1%5D%20*%20v2%5B2%5D%20-%20v1%5B2%5D%20*%20v2%5B1%5D%7D%20)%20)%3B%20detener%20%3D%20Tiempo%20de%20HP()%3B%20Show(%20(detener%20-%20iniciar)%20%2F%201e6%20)%3B%2F%2F3.2s%20For(%20q%20%3D%201%2C%20q%20%26lt%3B%2010000%2C%20q%20%2B%3D%201%2C%20v1%20%3D%20J(%203%2C%201%2C%20Uniforme%20aleatorio%20(%20-1%2C%201%20)%20)%3B%20v2%20%3D%20J(%203%2C%201%2C%20Uniforme%20aleatorio(%20-1%2C%201%20)%20)%3B%20Si(%20Todo(%20Redondo(%20Matriz(%20%7Bv1%5B2%5D%20*%20v2%5B3%5D%20-%20v1%5B3%5D%20*%20v2%5B2%5D%2C%20v1%5B3%5D%20*%20v2%5B1%5D%20-%20v1%5B1%5D%20*%20v2%5B3%5D%2C%20v1%5B1%5D%20*%20v2%5B2%5D%20-%20v1%5B2%5D%20*%20v2%5B1%5D%7D%20)%2C%2010%20)%20%2F%2F%20%3D%3D%20%2F%2F%20(i%20%3D%201%3B%20j%20%3D%20-1%20%3B%20Ronda(%20J(%203%2C%201%2C%20(j%20*%3D%20-1)%20*%20Det(%20(v1%20%7C%7C%20v2)%5BEliminar(%20%5B1%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%2C%2010%20)%20%3B%20)%20%2F%2F%20)%20%3D%3D%200%2F%2F%20%2C%20%2F%2F%20Lanzar(%20Char(%20q%20)%20)%20)%3B%20)%3B%20Curiosamente%2C%20redondear%20a%2011%20lugares%20en%20ocasiones%20no%20coincide%20con%20los%20resultados.%20Probablemente%20vectores%20casi%20colineales.%3C%2FDIV%3E%3C%2FNOSCRIPT%3E%3C%2FNOSCRIPT%3E%3C%2FDIV%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-611656%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20C%C3%B3mo%20calcular%20el%20producto%20cruzado%20vectorial%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-611656%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EBueno%2C%20el%20zombie%20revivido%20me%20atrap%C3%B3.%20Aqu%C3%AD%20hay%20una%20manera%20de%20hacerlo%20a%20trav%C3%A9s%20de%20determinantes%20como%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F982%22%20target%3D%22_blank%22%3E%20%40Craige_Hales%3C%2FA%3E%20mencionado.%20Es%20corto%2C%20pero%20no%20s%C3%A9...%20no%20es%20muy%20sencillo.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3EcrossP%20%3D%20Function(%20%7Bx%2C%20y%2C%20i%20%3D%201%7D%2C%0A%20Return(%20J(%203%2C%201%2C%20Det(%20(x%20%7C%7C%20y)%5BRemove(%20%5B1%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%20)%0A)%3B%0A%3C%2FCODE%3E%3C%2FPRE%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3Ees%20decir%2C%20utilizando%20los%20datos%20proporcionados%20originalmente%3A%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22brady_brady_0-1678770863902.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22brady_brady_0-1678770863902.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22brady_brady_0-1678770863902.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F50994iC68731CC95838C56%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22brady_brady_0-1678770863902.png%22%20alt%3D%22brady_brady_0-1678770863902.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-610312%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20C%C3%B3mo%20calcular%20el%20producto%20cruzado%20vectorial%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-610312%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EPerd%C3%B3n%20por%20revivir%20este%20hilo%20de%20zombies%2C%20pero%20aqu%C3%AD%20hay%20un%20error%20de%20signo%20en%20el%20segundo%20elemento.creo%20que%20deber%C3%ADa%20ser%3C%2FP%3E%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3EMatrix(%0A%20%20%7Bv1%5B2%5D%20*%20v2%5B3%5D%20-%20v1%5B3%5D%20*%20v2%5B2%5D%2C%20v1%5B3%5D%20*%20v2%5B1%5D%20-%20v1%5B1%5D%20*%20v2%5B3%5D%2C%20v1%5B1%5D%20*%20v2%5B2%5D%20-%20v1%5B2%5D%20*%20v2%5B1%5D%7D%3CBR%20%2F%3E)%3C%2FCODE%3E%3C%2FPRE%3E%3CP%3ESolo%20quiero%20dejar%20esto%20aqu%C3%AD%20para%20cualquiera%20que%20venga%20a%20copiar%20y%20pegar%20r%C3%A1pidamente.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-236315%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20C%C3%B3mo%20calcular%20el%20producto%20cruzado%20vectorial%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-236315%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EGracias%20cwillden%2C%20esto%20es%20esencialmente%20lo%20que%20he%20implementado.%20Funciona%20para%20m%C3%AD%20ya%20que%20s%C3%B3lo%20me%20preocupan%20los%20vectores%203D%2C%20pero%20me%20sorprende%20que%20no%20sea%20una%20funci%C3%B3n%20integrada.%20Voy%20a%20dejar%20esto%20abierto%20por%20un%20momento%20para%20ver%20si%20alguien%20m%C3%A1s%20conoce%20esa%20forma.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-236298%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20C%C3%B3mo%20calcular%20el%20producto%20cruzado%20vectorial%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-236298%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EEspero%20que%20a%20alguien%20se%20le%20ocurra%20una%20manera%20inteligente%20de%20hacer%20esto.%20La%20funci%C3%B3n%20det()%20est%C3%A1%20estrechamente%20relacionada%2C%20pero%20no%20entiendo%20c%C3%B3mo%20usar%20det(matriz%203x3)%20para%20recuperar%20m%C3%A1s%20que%20un%20valor%20escalar.%20Creo%20que%20podr%C3%ADas%20usar%20det(submatriz%202x2)%20tres%20veces%2C%20pero%20creo%20que%20lo%20m%C3%A1s%20sencillo%3CA%20href%3D%22https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCross_product%23Mnemonic%22%20target%3D%22_blank%22%20rel%3D%22noopener%20nofollow%20noreferrer%22%3E%20xyzzy%3C%2FA%3E%20El%20enfoque%20es%20m%C3%A1s%20simple%20e%20igual%20de%20r%C3%A1pido.%3C%2FP%3E%3CP%3ELo%20uso%20para%20las%20normales%20de%20superficie%20en%20escenas%203D%2C%20hay%20algo%20de%20JSL%20en%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FUncharted%2FCustom-Visualization%2Fba-p%2F191559%22%20target%3D%22_blank%22%3E%20https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FUncharted%2FCustom-Visualization%2Fba-p%2F191559%3C%2FA%3E%20.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-236294%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20C%C3%B3mo%20calcular%20el%20producto%20cruzado%20vectorial%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-236294%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ESi%20solo%20trabaja%20con%20vectores%203x1%20(o%201x3)%2C%20entonces%20creo%20que%20la%20eficiencia%20o%20elegancia%20computacional%20no%20es%20demasiado%20importante.%C2%BFSer%C3%ADa%20esto%20suficiente%3F%3C%2FP%3E%0A%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3Ecross_prod%20%3D%20function(%7Bv1%2C%20v2%7D%2C%0A%20matrix(%7Bv1%5B2%5D*v2%5B3%5D%20-%20v1%5B3%5D*v2%5B2%5D%2C%20v1%5B1%5D*v2%5B3%5D%20-%20v1%5B3%5D*v2%5B1%5D%2C%20v1%5B1%5D*v2%5B2%5D%20-%20v1%5B2%5D*v2%5B1%5D%7D)%3B%0A)%3B%0A%0Across_prod(v1%2C%20v2)%3B%3C%2FCODE%3E%3C%2FPRE%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
CaseyL
Level II

How to calculate Vector Cross Product

From the documentation it looks like the * operator will perform a cross product and ;* will perform a dot product. I want to use a cross product to determine the vector normal to a pair of known vectors like this:

 

p1 = [1, 2, 4];
p2 = [2, 1, 4];
p3 = [2, 2, 4];

v1 = p3 - p1;
v2 = p2 - p1;

xProd = v1*v2;

 3 points define a plane, two vectors taken from those points do the same, the cross-product should give the normal vector of that plane. The problem seems to be that the dimensions of the two matrices being multiplied (v1 and v2) do not agree -- nRows(v1) should equal nCols(v2). I can implement this manually with a simplified formula for vector cross products but does anyone know how to format this differently to work with matrix multiplication?

7 REPLIES 7
cwillden
Super User (Alumni)

Re: How to calculate Vector Cross Product

If you're only ever dealing 3x1 (or 1x3) vectors, then I would think computational efficiency or elegance is not too important.  Would this be sufficient?

cross_prod = function({v1, v2},
	matrix({v1[2]*v2[3] - v1[3]*v2[2], v1[1]*v2[3] - v1[3]*v2[1], v1[1]*v2[2] - v1[2]*v2[1]});
);

cross_prod(v1, v2);
-- Cameron Willden
Craige_Hales
Super User

Re: How to calculate Vector Cross Product

I hope someone comes up with a clever way to do this. The det() function is closely related, but I don't understand how to use det(3x3 matrix) to get back more than a scalar value. I think you could use det(2x2 sub-matrix) three times, but I think the straight-forward xyzzy approach is simpler and just as fast.

I use it for the surface normals in 3D scenes, there is some JSL in https://community.jmp.com/t5/Uncharted/Custom-Visualization/ba-p/191559 .

Craige
CaseyL
Level II

Re: How to calculate Vector Cross Product

Thanks cwillden, this is essentially what  I have implemented. It does work for me since I am only concerned with 3D vectors, but I am supprised this isn't a built in function. I'm going to leave this open for a bit to see if anyone else knows of such a way. 

klk
klk
Level III

Re: How to calculate Vector Cross Product

Sorry for reviving this zombie thread, but there is a sign error in the second element here.  I believe it should be

Matrix(
		{v1[2] * v2[3] - v1[3] * v2[2], v1[3] * v2[1] - v1[1] * v2[3], v1[1] * v2[2] - v1[2] * v2[1]}
)

Just want to leave this here for anyone else who comes along for a quick copy-paste.

Re: How to calculate Vector Cross Product

Well, the revived zombie caught me. Here is a way to do it via determinants as @Craige_Hales mentioned. It is short, but I don't know... it isn't very simple.

 

crossP = Function( {x, y, i = 1},
	Return( J( 3, 1, Det( (x || y)[Remove( [1, 2, 3], i++ ), 0] ) ) )
);

 

i.e., using the originally-supplied data:

brady_brady_0-1678770863902.png

 

Craige_Hales
Super User

Re: How to calculate Vector Cross Product

@brady_brady  Cool! It needs a tweak if you are going to use it:

	i = 1;
	j = -1;
	J( 3, 1, (j *= -1) * Det( (v1 || v2)[Remove( [1, 2, 3], i++ ), 0] ) );

 https://mathinsight.org/cross_product_formula shows how the middle element needs to be negative.  Above, j will alternate sign (1, -1, 1), and i increases (1, 2, 3). The J(...) function has an implicit loop that evaluates the 3rd argument for each element.

 

The straight forward corrected formula from @klk  is about 3 times faster and about N times easier to understand.

 

Test code.

View more...

v1 = [0, 0, 1];
v2 = [0, 1, 0];

start = HP Time();
For( t = 1, t < 1e6, t += 1,
	i = 1;
	j = -1;
	J( 3, 1, (j *= -1) * Det( (v1 || v2)[Remove( [1, 2, 3], i++ ), 0] ) );
);
stop = HP Time();
Show( (stop - start) / 1e6 );//9.3s


start = HP Time();
For( t = 1, t < 1e6, t += 1,
	Matrix( {v1[2] * v2[3] - v1[3] * v2[2], v1[3] * v2[1] - v1[1] * v2[3], v1[1] * v2[2] - v1[2] * v2[1]} )
);
stop = HP Time();
Show( (stop - start) / 1e6 );//3.2s


For( q = 1, q < 10000, q += 1,
	v1 = J( 3, 1, Random Uniform( -1, 1 ) );
	v2 = J( 3, 1, Random Uniform( -1, 1 ) );
	If(
		All(
			Round( Matrix( {v1[2] * v2[3] - v1[3] * v2[2], v1[3] * v2[1] - v1[1] * v2[3], v1[1] * v2[2] - v1[2] * v2[1]} ), 10 ) //
			== //
			(i = 1; j = -1 ; Round( J( 3, 1, (j *= -1) * Det( (v1 || v2)[Remove( [1, 2, 3], i++ ), 0] ) ), 10 ) ; ) //
		) == 0//
	, //
		Throw( Char( q ) )
	);
);
Curiously, rounding to 11 places occasionally fails to match results. Probably nearly collinear vectors.

Craige

Re: How to calculate Vector Cross Product

The inferior performance doesn't surprise... thanks for inserting the sign adjustment. I omitted the "sign checkerboard" inadvertently.

 

IMO this is one of those instances where "just because you can, doesn't mean you should" applies... {cool, fun, short} doesn't outweigh {understandable, maintainable, speedy}.