cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
%3CLINGO-SUB%20id%3D%22lingo-sub-236281%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ESo%20berechnen%20Sie%20das%20Vektorkreuzprodukt%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-236281%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EAus%20der%20Dokumentation%20geht%20hervor%2C%20dass%20der%20*-Operator%20ein%20Kreuzprodukt%20und%20%3B*%20ein%20Skalarprodukt%20ausf%C3%BChrt.%20Ich%20m%C3%B6chte%20ein%20Kreuzprodukt%20verwenden%2C%20um%20die%20Vektornormale%20zu%20einem%20Paar%20bekannter%20Vektoren%20wie%20folgt%20zu%20bestimmen%3A%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3Ep1%20%3D%20%5B1%2C%202%2C%204%5D%3B%0Ap2%20%3D%20%5B2%2C%201%2C%204%5D%3B%0Ap3%20%3D%20%5B2%2C%202%2C%204%5D%3B%0A%0Av1%20%3D%20p3%20-%20p1%3B%0Av2%20%3D%20p2%20-%20p1%3B%0A%0AxProd%20%3D%20v1*v2%3B%3C%2FCODE%3E%3C%2FPRE%3E%3CP%3E3%20Punkte%20definieren%20eine%20Ebene%2C%20zwei%20Vektoren%20aus%20diesen%20Punkten%20bewirken%20dasselbe%2C%20das%20Kreuzprodukt%20sollte%20den%20Normalenvektor%20dieser%20Ebene%20ergeben.%20Das%20Problem%20scheint%20darin%20zu%20liegen%2C%20dass%20die%20Dimensionen%20der%20beiden%20zu%20multiplizierenden%20Matrizen%20(v1%20und%20v2)%20nicht%20%C3%BCbereinstimmen%20%E2%80%93%20nRows(v1)%20sollte%20gleich%20nCols(v2)%20sein.%20Ich%20kann%20dies%20manuell%20mit%20einer%20vereinfachten%20Formel%20f%C3%BCr%20Vektorkreuzprodukte%20implementieren%2C%20aber%20wei%C3%9F%20jemand%2C%20wie%20man%20dies%20anders%20formatiert%2C%20um%20mit%20der%20Matrixmultiplikation%20zu%20arbeiten%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-611821%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20So%20berechnen%20Sie%20das%20Vektorkreuzprodukt%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-611821%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EDie%20schlechtere%20Leistung%20%C3%BCberrascht%20nicht%20...%20Danke%2C%20dass%20Sie%20die%20Vorzeichenanpassung%20vorgenommen%20haben.%20Ich%20habe%20versehentlich%20das%20%E2%80%9EZeichen-Schachbrett%E2%80%9C%20weggelassen.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EMeiner%20Meinung%20nach%20ist%20dies%20einer%20dieser%20F%C3%A4lle%2C%20in%20denen%20gilt%3A%20%E2%80%9ENur%20weil%20man%20es%20kann%2C%20hei%C3%9Ft%20das%20nicht%2C%20dass%20man%20es%20sollte%E2%80%9C%20...%20%7Bcool%2C%20lustig%2C%20kurz%7D%20%C3%BCberwiegt%20nicht%20%7Bverst%C3%A4ndlich%2C%20wartbar%2C%20schnell%7D.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-611720%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20So%20berechnen%20Sie%20das%20Vektorkreuzprodukt%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-611720%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F3552%22%20target%3D%22_blank%22%3E%40brady_brady%3C%2FA%3E%20Cool!%20Es%20bedarf%20einer%20Optimierung%2C%20wenn%20Sie%20es%20verwenden%20m%C3%B6chten%3A%3C%2FP%3E%0A%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3E%20i%20%3D%201%3B%0A%20j%20%3D%20-1%3B%0A%20J(%203%2C%201%2C%20(j%20*%3D%20-1)%20*%20Det(%20(v1%20%7C%7C%20v2)%5BRemove(%20%5B1%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%3B%3C%2FCODE%3E%3C%2FPRE%3E%0A%3CP%3E%3CCODE%20class%3D%22%20language-jsl%22%3E%3C%2FCODE%3E%3CA%20href%3D%22https%3A%2F%2Fmathinsight.org%2Fcross_product_formula%22%20target%3D%22_blank%22%20rel%3D%22nofollow%20noopener%20noreferrer%22%3Ehttps%3A%2F%2Fmathinsight.org%2Fcross_product_formula%3C%2FA%3E%20zeigt%2C%20wie%20das%20mittlere%20Element%20negativ%20sein%20muss.Oben%20wechselt%20j%20das%20Vorzeichen%20(1%2C%20-1%2C%201)%20und%20i%20erh%C3%B6ht%20(1%2C%202%2C%203).%20Die%20Funktion%20J(...)%20verf%C3%BCgt%20%C3%BCber%20eine%20implizite%20Schleife%2C%20die%20das%20dritte%20Argument%20f%C3%BCr%20jedes%20Element%20auswertet.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EDie%20einfach%20korrigierte%20Formel%20von%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F11962%22%20target%3D%22_blank%22%3E%20%40klk%3C%2FA%3E%20ist%20etwa%20dreimal%20schneller%20und%20etwa%20N-mal%20einfacher%20zu%20verstehen.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ETestcode.%3C%2FP%3E%0A%3CDIV%20class%3D%22lia-spoiler-container%22%3E%3CA%20class%3D%22lia-spoiler-link%22%20href%3D%22%23%22%20rel%3D%22nofollow%20noopener%20noreferrer%22%20target%3D%22_blank%22%3EMehr%20sehen...%3C%2FA%3E%3CNOSCRIPT%3E%3CDIV%20class%3D%22lia-spoiler-content%22%3E%3CBR%20%2F%3E%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3Ev1%20%3D%20%5B0%2C%200%2C%201%5D%3B%0Av2%20%3D%20%5B0%2C%201%2C%200%5D%3B%0A%0Astart%20%3D%20HP%20Time()%3B%0AFor(%20t%20%3D%201%2C%20t%20%26lt%3B%201e6%2C%20t%20%2B%3D%201%2C%0A%20i%20%3D%201%3B%0A%20j%20%3D%20-1%3B%0A%20J(%203%2C%201%2C%20(j%20*%3D%20-1)%20*%20Det(%20(v1%20%7C%7C%20v2)%5BRemove(%20%5B1%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%3B%0A)%3B%0Astop%20%3D%20HP%20Time()%3B%0AShow(%20(stop%20-%20start)%20%2F%201e6%20)%3B%2F%2F9.3s%0A%0A%0Astart%20%3D%20HP%20Time()%3B%0AFor(%20t%20%3D%201%2C%20t%20%26lt%3B%201e6%2C%20t%20%2B%3D%201%2C%0A%20Matrix(%20%7Bv1%5B2%5D%20*%20v2%5B3%5D%20-%20v1%5B3%5D%20*%20v2%5B2%5D%2C%20v1%5B3%5D%20*%20v2%5B1%5D%20-%20v1%5B1%5D%20*%20v2%5B3%5D%2C%20v1%5B1%5D%20*%20v2%5B2%5D%20-%20v1%5B2%5D%20*%20v2%5B1%5D%7D%20)%0A)%3B%0Astop%20%3D%20HP%20Time()%3B%0AShow(%20(stop%20-%20start)%20%2F%201e6%20)%3B%2F%2F3.2s%0A%0A%0AFor(%20q%20%3D%201%2C%20q%20%26lt%3B%2010000%2C%20q%20%2B%3D%201%2C%0A%20v1%20%3D%20J(%203%2C%201%2C%20Random%20Uniform(%20-1%2C%201%20)%20)%3B%0A%20v2%20%3D%20J(%203%2C%201%2C%20Random%20Uniform(%20-1%2C%201%20)%20)%3B%0A%20If(%0A%20%20All(%0A%20%20%20Round(%20Matrix(%20%7Bv1%5B2%5D%20*%20v2%5B3%5D%20-%20v1%5B3%5D%20*%20v2%5B2%5D%2C%20v1%5B3%5D%20*%20v2%5B1%5D%20-%20v1%5B1%5D%20*%20v2%5B3%5D%2C%20v1%5B1%5D%20*%20v2%5B2%5D%20-%20v1%5B2%5D%20*%20v2%5B1%5D%7D%20)%2C%2010%20)%20%2F%2F%0A%20%20%20%3D%3D%20%2F%2F%0A%20%20%20(i%20%3D%201%3B%20j%20%3D%20-1%20%3B%20Round(%20J(%203%2C%201%2C%20(j%20*%3D%20-1)%20*%20Det(%20(v1%20%7C%7C%20v2)%5BRemove(%20%5B1%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%2C%2010%20)%20%3B%20)%20%2F%2F%0A%20%20)%20%3D%3D%200%2F%2F%0A%20%2C%20%2F%2F%0A%20%20Throw(%20Char(%20q%20)%20)%0A%20)%3B%0A)%3B%3C%2FCODE%3E%3C%2FPRE%3ESeltsamerweise%20f%C3%BChrt%20das%20Runden%20auf%2011%20Stellen%20gelegentlich%20nicht%20zu%20den%20Ergebnissen.%20Wahrscheinlich%20nahezu%20kollineare%20Vektoren.%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FDIV%3E%3CNOSCRIPT%3E%3CDIV%20class%3D%22lia-spoiler-noscript-content%22%3Ev1%20%3D%20%5B0%2C%200%2C%201%5D%3B%20v2%20%3D%20%5B0%2C%201%2C%200%5D%3B%20start%20%3D%20HP%20Time()%3B%20For(%20t%20%3D%201%2C%20t%20%26lt%3B%201e6%2C%20t%20%2B%3D%201%2C%20i%20%3D%201%3B%20j%20%3D%20-1%3B%20J(%203%2C%201%2C%20(j%20*%3D%20-1)%20*%20Det(%20(v1%20%7C%7C%20v2)%5BRemove(%20%5B%201%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%3B%20)%3B%20stop%20%3D%20HP%20Time()%3B%20Show(%20(stop%20-%20start)%20%2F%201e6%20)%3B%2F%2F9.3s%20start%20%3D%20HP%20Time()%3B%20For(%20t%20%3D%201%2C%20t%20%26lt%3B%201e6%2C%20t%20%2B%3D%201%2C%20Matrix(%20%7Bv1%5B2%5D%20*%20v2%5B3%5D%20-%20v1%5B3%5D%20*%20v2%5B2%5D%2C%20v1%5B3%5D%20*%20v2%5B1%5D%20-%20v1%5B%201%5D%20*%20v2%5B3%5D%2C%20v1%5B1%5D%20*%20v2%5B2%5D%20-%20v1%5B2%5D%20*%20v2%5B1%5D%7D%20)%20)%3B%20stop%20%3D%20HP%20Time()%3B%20Show(%20(stop%20-%20start)%20%2F%201e6%20)%3B%2F%2F3.2s%20For(%20q%20%3D%201%2C%20q%20%26lt%3B%2010000%2C%20q%20%2B%3D%201%2C%20v1%20%3D%20J(%203%2C%201%2C%20Random%20Uniform(%20-1%2C%201%20)%20)%3B%20v2%20%3D%20J(%203%2C%201%2C%20Random%20Uniform(%20-1%2C%201%20)%20)%3B%20If(%20All(%20Round(%20Matrix(%20%7Bv1%5B2%5D%20*%20v2%5B3%5D%20-%20v1%5B3%5D%20*%20v2%5B2%5D%2C%20v1%5B3%5D%20*%20v2%5B1%5D%20-%20v1%5B1%5D%20*%20v2%5B3%5D%2C%20v1%5B1%5D%20*%20v2%5B2%5D%20-%20v1%5B2%5D%20*%20v2%5B1%5D%7D%20)%2C%2010%20)%20%2F%2F%20%3D%3D%20%2F%2F%20(i%20%3D%201%3B%20j%20%3D%20-1%20%3B%20Round(%20J(%203%2C%201%2C%20(j%20*%3D%20-1)%20*%20Det(%20(v1%20%7C%7C%20v2)%5BRemove(%20%5B1%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%2C%2010%20)%20%3B%20)%20%2F%2F%20)%20%3D%3D%200%2F%2F%20%2C%20%2F%2F%20Throw(%20Char(%20q%20)%20)%20)%3B%20)%3B%20Seltsamerweise%20f%C3%BChrt%20das%20Runden%20auf%2011%20Stellen%20gelegentlich%20nicht%20zu%20den%20Ergebnissen.%20Wahrscheinlich%20nahezu%20kollineare%20Vektoren.%3C%2FDIV%3E%3C%2FNOSCRIPT%3E%3C%2FNOSCRIPT%3E%3C%2FDIV%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-611656%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20So%20berechnen%20Sie%20das%20Vektorkreuzprodukt%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-611656%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ENun%2C%20der%20wiederbelebte%20Zombie%20hat%20mich%20erwischt.%20Hier%20ist%20eine%20M%C3%B6glichkeit%2C%20dies%20%C3%BCber%20Determinanten%20als%20zu%20tun%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F982%22%20target%3D%22_blank%22%3E%20%40Craige_Hales%3C%2FA%3E%20erw%C3%A4hnt.%20Es%20ist%20kurz%2C%20aber%20ich%20wei%C3%9F%20es%20nicht...%20es%20ist%20nicht%20sehr%20einfach.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3EcrossP%20%3D%20Function(%20%7Bx%2C%20y%2C%20i%20%3D%201%7D%2C%0A%20Return(%20J(%203%2C%201%2C%20Det(%20(x%20%7C%7C%20y)%5BRemove(%20%5B1%2C%202%2C%203%5D%2C%20i%2B%2B%20)%2C%200%5D%20)%20)%20)%0A)%3B%0A%3C%2FCODE%3E%3C%2FPRE%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3Ed.%20h.%20unter%20Verwendung%20der%20urspr%C3%BCnglich%20bereitgestellten%20Daten%3A%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22brady_brady_0-1678770863902.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22brady_brady_0-1678770863902.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22brady_brady_0-1678770863902.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F50994iC68731CC95838C56%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22brady_brady_0-1678770863902.png%22%20alt%3D%22brady_brady_0-1678770863902.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-610312%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20So%20berechnen%20Sie%20das%20Vektorkreuzprodukt%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-610312%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ETut%20mir%20leid%2C%20dass%20ich%20diesen%20Zombie-Thread%20wiederbeleben%20muss%2C%20aber%20im%20zweiten%20Element%20ist%20hier%20ein%20Vorzeichenfehler.Ich%20glaube%2C%20das%20sollte%20so%20sein%3C%2FP%3E%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3EMatrix(%0A%20%20%7Bv1%5B2%5D%20*%20v2%5B3%5D%20-%20v1%5B3%5D%20*%20v2%5B2%5D%2C%20v1%5B3%5D%20*%20v2%5B1%5D%20-%20v1%5B1%5D%20*%20v2%5B3%5D%2C%20v1%5B1%5D%20*%20v2%5B2%5D%20-%20v1%5B2%5D%20*%20v2%5B1%5D%7D%3CBR%20%2F%3E)%3C%2FCODE%3E%3C%2FPRE%3E%3CP%3EIch%20m%C3%B6chte%20dies%20hier%20einfach%20f%C3%BCr%20alle%20anderen%20belassen%2C%20die%20zum%20schnellen%20Kopieren%20und%20Einf%C3%BCgen%20vorbeikommen.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-236315%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20So%20berechnen%20Sie%20das%20Vektorkreuzprodukt%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-236315%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EDanke%20Cwillden%2C%20das%20ist%20im%20Wesentlichen%20das%2C%20was%20ich%20implementiert%20habe.%20Bei%20mir%20funktioniert%20es%20zwar%2C%20da%20ich%20mich%20nur%20mit%203D-Vektoren%20besch%C3%A4ftige%2C%20aber%20ich%20bin%20davon%20%C3%BCberzeugt%2C%20dass%20dies%20keine%20eingebaute%20Funktion%20ist.%20Ich%20werde%20das%20eine%20Weile%20offen%20lassen%2C%20um%20zu%20sehen%2C%20ob%20jemand%20anderes%20einen%20solchen%20Weg%20kennt.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-236298%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20So%20berechnen%20Sie%20das%20Vektorkreuzprodukt%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-236298%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EIch%20hoffe%2C%20dass%20jemand%20einen%20cleveren%20Weg%20findet%2C%20dies%20zu%20tun.%20Die%20Funktion%20det()%20ist%20eng%20verwandt%2C%20aber%20ich%20verstehe%20nicht%2C%20wie%20man%20mit%20det(3x3-Matrix)%20mehr%20als%20einen%20Skalarwert%20zur%C3%BCckerh%C3%A4lt.%20Ich%20denke%2C%20Sie%20k%C3%B6nnten%20det(2x2%20sub-matrix)%20dreimal%20verwenden%2C%20aber%20ich%20denke%2C%20das%20ist%20einfach%3CA%20href%3D%22https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCross_product%23Mnemonic%22%20target%3D%22_blank%22%20rel%3D%22noopener%20nofollow%20noreferrer%22%3E%20xyzzy%3C%2FA%3E%20Der%20Ansatz%20ist%20einfacher%20und%20genauso%20schnell.%3C%2FP%3E%3CP%3EIch%20verwende%20es%20f%C3%BCr%20die%20Oberfl%C3%A4chennormalen%20in%203D-Szenen%2C%20es%20ist%20etwas%20JSL%20enthalten%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FUncharted%2FCustom-Visualization%2Fba-p%2F191559%22%20target%3D%22_blank%22%3E%20https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FUncharted%2FCustom-Visualization%2Fba-p%2F191559%3C%2FA%3E%20.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-236294%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20So%20berechnen%20Sie%20das%20Vektorkreuzprodukt%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-236294%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EWenn%20Sie%20immer%20nur%20mit%203x1-%20(oder%201x3-)Vektoren%20arbeiten%2C%20sind%20Recheneffizienz%20oder%20Eleganz%20meiner%20Meinung%20nach%20nicht%20allzu%20wichtig.W%C3%A4re%20das%20ausreichend%3F%3C%2FP%3E%0A%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3Ecross_prod%20%3D%20function(%7Bv1%2C%20v2%7D%2C%0A%20matrix(%7Bv1%5B2%5D*v2%5B3%5D%20-%20v1%5B3%5D*v2%5B2%5D%2C%20v1%5B1%5D*v2%5B3%5D%20-%20v1%5B3%5D*v2%5B1%5D%2C%20v1%5B1%5D*v2%5B2%5D%20-%20v1%5B2%5D*v2%5B1%5D%7D)%3B%0A)%3B%0A%0Across_prod(v1%2C%20v2)%3B%3C%2FCODE%3E%3C%2FPRE%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
CaseyL
Level II

How to calculate Vector Cross Product

From the documentation it looks like the * operator will perform a cross product and ;* will perform a dot product. I want to use a cross product to determine the vector normal to a pair of known vectors like this:

 

p1 = [1, 2, 4];
p2 = [2, 1, 4];
p3 = [2, 2, 4];

v1 = p3 - p1;
v2 = p2 - p1;

xProd = v1*v2;

 3 points define a plane, two vectors taken from those points do the same, the cross-product should give the normal vector of that plane. The problem seems to be that the dimensions of the two matrices being multiplied (v1 and v2) do not agree -- nRows(v1) should equal nCols(v2). I can implement this manually with a simplified formula for vector cross products but does anyone know how to format this differently to work with matrix multiplication?

7 REPLIES 7
cwillden
Super User (Alumni)

Re: How to calculate Vector Cross Product

If you're only ever dealing 3x1 (or 1x3) vectors, then I would think computational efficiency or elegance is not too important.  Would this be sufficient?

cross_prod = function({v1, v2},
	matrix({v1[2]*v2[3] - v1[3]*v2[2], v1[1]*v2[3] - v1[3]*v2[1], v1[1]*v2[2] - v1[2]*v2[1]});
);

cross_prod(v1, v2);
-- Cameron Willden
Craige_Hales
Super User

Re: How to calculate Vector Cross Product

I hope someone comes up with a clever way to do this. The det() function is closely related, but I don't understand how to use det(3x3 matrix) to get back more than a scalar value. I think you could use det(2x2 sub-matrix) three times, but I think the straight-forward xyzzy approach is simpler and just as fast.

I use it for the surface normals in 3D scenes, there is some JSL in https://community.jmp.com/t5/Uncharted/Custom-Visualization/ba-p/191559 .

Craige
CaseyL
Level II

Re: How to calculate Vector Cross Product

Thanks cwillden, this is essentially what  I have implemented. It does work for me since I am only concerned with 3D vectors, but I am supprised this isn't a built in function. I'm going to leave this open for a bit to see if anyone else knows of such a way. 

klk
klk
Level III

Re: How to calculate Vector Cross Product

Sorry for reviving this zombie thread, but there is a sign error in the second element here.  I believe it should be

Matrix(
		{v1[2] * v2[3] - v1[3] * v2[2], v1[3] * v2[1] - v1[1] * v2[3], v1[1] * v2[2] - v1[2] * v2[1]}
)

Just want to leave this here for anyone else who comes along for a quick copy-paste.

Re: How to calculate Vector Cross Product

Well, the revived zombie caught me. Here is a way to do it via determinants as @Craige_Hales mentioned. It is short, but I don't know... it isn't very simple.

 

crossP = Function( {x, y, i = 1},
	Return( J( 3, 1, Det( (x || y)[Remove( [1, 2, 3], i++ ), 0] ) ) )
);

 

i.e., using the originally-supplied data:

brady_brady_0-1678770863902.png

 

Craige_Hales
Super User

Re: How to calculate Vector Cross Product

@brady_brady  Cool! It needs a tweak if you are going to use it:

	i = 1;
	j = -1;
	J( 3, 1, (j *= -1) * Det( (v1 || v2)[Remove( [1, 2, 3], i++ ), 0] ) );

 https://mathinsight.org/cross_product_formula shows how the middle element needs to be negative.  Above, j will alternate sign (1, -1, 1), and i increases (1, 2, 3). The J(...) function has an implicit loop that evaluates the 3rd argument for each element.

 

The straight forward corrected formula from @klk  is about 3 times faster and about N times easier to understand.

 

Test code.

View more...

v1 = [0, 0, 1];
v2 = [0, 1, 0];

start = HP Time();
For( t = 1, t < 1e6, t += 1,
	i = 1;
	j = -1;
	J( 3, 1, (j *= -1) * Det( (v1 || v2)[Remove( [1, 2, 3], i++ ), 0] ) );
);
stop = HP Time();
Show( (stop - start) / 1e6 );//9.3s


start = HP Time();
For( t = 1, t < 1e6, t += 1,
	Matrix( {v1[2] * v2[3] - v1[3] * v2[2], v1[3] * v2[1] - v1[1] * v2[3], v1[1] * v2[2] - v1[2] * v2[1]} )
);
stop = HP Time();
Show( (stop - start) / 1e6 );//3.2s


For( q = 1, q < 10000, q += 1,
	v1 = J( 3, 1, Random Uniform( -1, 1 ) );
	v2 = J( 3, 1, Random Uniform( -1, 1 ) );
	If(
		All(
			Round( Matrix( {v1[2] * v2[3] - v1[3] * v2[2], v1[3] * v2[1] - v1[1] * v2[3], v1[1] * v2[2] - v1[2] * v2[1]} ), 10 ) //
			== //
			(i = 1; j = -1 ; Round( J( 3, 1, (j *= -1) * Det( (v1 || v2)[Remove( [1, 2, 3], i++ ), 0] ) ), 10 ) ; ) //
		) == 0//
	, //
		Throw( Char( q ) )
	);
);
Curiously, rounding to 11 places occasionally fails to match results. Probably nearly collinear vectors.

Craige

Re: How to calculate Vector Cross Product

The inferior performance doesn't surprise... thanks for inserting the sign adjustment. I omitted the "sign checkerboard" inadvertently.

 

IMO this is one of those instances where "just because you can, doesn't mean you should" applies... {cool, fun, short} doesn't outweigh {understandable, maintainable, speedy}.