Choose Language Hide Translation Bar

The DOE Role Playing Game: Interactive Training of Research Chemists at Imperial College London (2023-EU-30MP-1304)

Since 2018 the Centre for Rapid Online Analysis of Reactions (ROAR), in partnership with JMP, has trained more than 200 chemists and engineers in using Design of Experiments (DOE) for research. During this time, annual workshops have evolved to give new users an accessible, educational, and exciting introduction to DOE. This presentation will discuss the evolution of ROAR training workshops, some lessons learned along the way, and ways role-playing activities allow small groups to experiment with different DOE strategies in the classroom. Our role-playing activity places students in a small contract research organization. It tasks them with improving the outcome of a key reaction step in their client’s production of a target molecule. The activity allows them to apply their DOE knowledge and skills throughout the process, from problem definition and evaluation of different design strategies to proposing an optimized solution. Synthetic generation of data allows the students to get immediate feedback on their experiment designs. Random noise and blocking elements are included to give them an experience resembling the challenges of real physical experimentation with DOE.

 

 

Hello  there.  My  name  is  Benjamin  Deadman.  I  am  the  Facility  Manager  for  the  Center  for  Rapid  Online  Analysis  of Reactions  at  Imperial  College  London.  I'm  going  to  be  talking  to  you  today  about,  well,  I  guess  on  the  abstract,  we  say  the   DoE Role Playing  Game, but it' s   actually  a  more  general  talk  about  our  journey  into  teaching  design  of  experiments  at  Imperial  College  London  and  chemistry  in  particular.

I'd  like  to  take  this  point  here  today  to  say  there  is  a  co- author  on  this  presentation,  which  is  Dr.  Volker  Kraft  of  the  JMP  Academic  Program.  However,  I've  been  a  bit  naughty  and  Volker  hasn't  actually  seen  this  slide  in  its  completion  yet.  While  I  want  to  do  due  credit  to  Volker  for  taking  me  along  on  this  journey  and  teaching  me  all  I  know  about  design  of  experiments,  any  missteps,  wrong  information,  or  anything  like  that  today,  and  that  is  entirely  on  me,  so  please  excuse  me  for  that.  But  I  do  want  to  give  Volker  credit  for  being  central  to  the  story  I'm  telling  you  about  today.

An  overview  of  the  talk.  If  you'll  give  me  the  time,  I  will  tell  you  a  little  bit  about  why  we're  interested  in  design  of  experiments,  and  particularly  starting  with  the  story  about  what  is  the  state  of  chemical  synthesis,  experimentation  and  data  today.

After  setting  that  scene,  I'll  then  give  my  view  on  why  chemists  really  should  be  learning  about  design  of  experiments  and  why  it's  such  a  shame  they  don't.  We'll  then  talk  about  our  journey  into  teaching  design  of  experiments,  how  we  go  about  it,  how  it's  evolved  over  the  last  few  years,  and  then  the  final  part  of  the  talk  will  be  around  this   DoE Role  Playing  Game.  It's  the  latest  iteration  of  our  teaching  here  and  some  of  the  lessons  we've  learned  running  this  over  a  couple  of  years.

The  State  of  Chemical  Synthesis  Experimentation  and  Data.  If  you  look  at  chemical  synthesis  in  the  21st  century,  we  have  some  amazing  instruments.  These  are  fancy  nuclear- magnetic  resonance  spectroscopy  tools,  fully  automated,  generate  amazing  data.   Benchtop  LC  systems,  so  much  automation  on  the  analysis  side.  Now  as  well,  we're  also  getting  into  online  databases  of  basically  everything  that  everyone's  done  and  reported  previously.  There's  so  much  automation,  so  much  data  out  there,  but  underneath  it  all,  the  reactions  are  still  handmade,  we  still  have  in  the  chemistry  lab  students  and  post-doctoral  researchers  working  away  in  this  organized  chaos,  combination  of  low  tech  and  high  tech  doing  chemical  experiments.

That  comes  with  problems.  Basically,  our  experimental  processes,  even  even  though  we've  got  these  amazing  analytical  tools  now,  our  experimental  processes  have  been  very  slow  to  keep  up.  I'd  like  to  tell  you  about...  I've  got  five  exhibits  to  show  you  about  some  of  the  problems  in  the  kind of data  and kind of  experiments  that  chemists  are  doing.

The  first  one  is  what  I  like  to  call  sparse  data  sets.  This  is  a  type  of  experiment  that  a  chemist  will  do.  If  they're  developing  a  new  chemical  reaction,  we  will  say,  "Here's  our  generic  reaction."  We  take  partner  A  and  we  react  with  partner  B  to  make  a  new  material,  a  new  chemical.

If  you've  developed  a  reaction  to  do  this  general  method  to  demonstrate  the  utility  of  it,  you're  going  to  go  and  do  something  called  a  substrate  scope.  To  do  your  substrate  scope,  you  will  fix  one  of  those  partners.  In  this  case,  let's  say  we're  fixing  one  of  the  boronic  acids  and  we  go  and  react  there  with  a  range  of  the  other  partner  and  you  explore  in  the  single  dimension.  Because  you  want  to  publish  it,  you  need  to  have  a  lot  of  things  that  work,  and  you  can  have  some  things  that kind of  work.

Once  you've  done  that,  you  explore  in  the  other  direction.  You  change  the  other  partner  or  keeping  the  other  one  fixed.  It's  pretty  much  a  one  factor  at  a  time  approach  and  you  explore  in  the  other  direction.  Based  on  this,  we  do  our   substrate  scope.  By  exploring  these  two  lines  through  this   substrate  scope  space,  it's  implied  that  anything  in  this  space  here  also  works  because  we  tested  on  the  individual  combinations.  It's  implied,  not  necessarily  true  all  the  time.

The  other  major  problem  with  the  data,  the  sin  of  the  synthetic  chemist,  and  I  can  say  that  because  I've  done  this  as  well  myself,  because  we're  trying  to  publish  the  data,  you  have  to  have  stuff  that  works.  You  can't  publish  a  reaction  if  you  can't  actually  make  much  with  it.  What  tends  to  happen  is  we  only  talk  about  the  positive  results,  the  things  that  have  worked,  and  we  don't  publish  what  DoE sn't  work.  A  lot  of  the  negative  data,  the  things  that  didn't  work  just  gets  left  out  of  the  papers.  That  has  really  biased  the  data  we've  got  historically  to  look  at.

The  other  problem,  I'd  say,  is  chemistry  is  very  observer- dependent.  I  talk  about  this  slightly  differently  for  different  audiences.  For  this  audience,  what  I'd  say  is  the  problem  is  that  if  we  run  a  chemical  experiment,  a  reaction,  typically  there's  certain  times  that  are  associated  with  that.  I  like  to  say  we've  got  these  three  types  of  reaction  times.  There's  five  minutes,  there's  one  hour,  and  then  there's  15  hours  or  16  hours,  something  like  that.  This  really  corresponds  to  what  the  chemist  is  doing  in  their  life.

There's  a  five- minute  reaction.  That's  enough  time  for  them  to  go  make  a  cup  of  tea.  If  it's  one  hour,  they've  gone  and  had  lunch.  If  it's  16  hours,  you  know  what  that  really  means  is  the  chemist  has  set  it  up,  gone  home  and  they  come  back  the  next  day  and  do  something  with  it.  There's  no  acknowledgement  of  the  fact  that  these  are  dynamic  processes and   just  because  you  observe  it  at  16  hours  DoE sn't  mean  that's  how  long  it  takes.

This  might  seem  inconsequential,  but  the  problem  is  that  the  data  out  there  in  the  literature  is  defined  by  this,  by  these  problems.  That  is  quite  a  limitation.  It  can  be  problematic  because  we  don't  treat  it  seriously  as  a  factor,  this  reaction  time.  It's  not  been  something  that's  recorded  well.  Really,  I  like  to  say  that  these  reported  reaction  times.  They've  got  more  to  do  with  the  life  of  the  chemist  than  the  actual  reaction.

Our  third  exhibit  is  reproducibility.  Chemistry  is  not  as  bad  as  some  other  subjects,  but  we  do  have  problems  where  someone  will  develop  some  new  chemistry,  a  new  reaction,  they  publish  it,  and  then  someone  else  tries  to  reproduce  it and  it  just  DoE sn't  work.  When  you're  in  the  field,  you  can  see  why.  Our  procedures,  this  is  an  example  procedure,  there's  nothing  wrong  with  it.  It's  just  fairly  example  of  how  it's  done.

There's  just  a  lot  of  little  details  in  there,  but  there's  a  lot  of  fuzziness  as  well.  Things  like  we  talk  about  doing  this  flash  column  chromatography,  this  purification  method,  and  it's  just  defined  as  20 %- 60 %  of  a  solvent  mix  with  some  other  added  solvent.  There's  no  mention  of  the  flow  rates  used,  the  time  this  is  done  over,  the  volumes  used.  It's  all  kind of left  there  to  be...  You  have  to  use  your  best  judgment  as  a  chemist  to  reproduce  something.  That  is  a  problem  and  that  is  contributing  to  the  reproducibility  problem  with  the  chemical  data.

Then  the  final  exhibit,  which  I think  is  the  one  I'll  be  talking  more  about  today  is  one  factor  at  a  time  experiments.  Chemists  love  them.  I  say  chemists  love  them.  Chemists  don't  realize  there's  anything  different.  This  is  how  synthetic  chemistry  is  done.  I  guess  once you  know,  otherwise,  you  look  back  on  it  and  go,  "Why  are  we  still  doing  that?"  Here's  an  example  paper.  It's  from  the  Journal  of  the  American  Chemical  Society.  It's  actually  a  very  nice  paper.  There's  nothing  wrong  with  the  paper  itself,  and  it  is  a  prime  example  of  just  how  these  optimization  studies  are  done.  This  is  just  the  done  thing.

They've  got  a  chemical  reaction,  and  you  can  see  over  and  underneath  our  reaction  arrow  here,  there's  a  whole  lot  of  different  things  which  are  going  into  that  reaction.  There's  a  lot  of  different  factors  at  play  here.  There's  quite  a  lot  of  work  that  goes  into  optimizing  something  like  this,  like  months  and  months  of  student  or  researcher  time  that  will  go  into  optimizing  this  particular  system.

They  use  a  one  factor  at  a  time  approach.  I  guess  everyone  here  today  is  probably  well  aware  of  what  one  factor  at  a  time  means.  What  that  means,  if  we  look  at  this  example  chart,  they're  trying  to  optimize  between  these  two  charts  here  optimizing  two  factors.  One  of  them  is  our  equivalence  of  this  reagent  here,  this  base.  Then  the  other  factor  they're  optimizing  is  the  temperature.  They  use  15  experiments  to  optimize  these  two.  It's  just  progressively  going  through  testing  different  quantities  of  this  reagent,  and  they  find  an  optimum  here  around  what  we  call  0.8  equivalence.  That's  their  one  factor  tested,  and  then  they  go  and  test  the  second  factor,  and  they  do  another  series  of  experiments  to  find  the  optimum  temperature.

This  approach,  everyone  here  probably  realizes,  completely  ignores  the  presence  of  factor  interactions,  which  is  a  problem.  We'll  come  back  to  the  slide  later  on  and  talk  more  about  that.  But  this  approach  here,  it's  the  way  it's  done  in  chemistry,  but  there  are  limitations  associated  with  these  OFAT  approaches.  If  anyone  is  quite  new  to  this  and  you're  wondering  what  I'm  talking  about  with  OFAT,  you  might  also  hear  about  it  called  one  variable  at  a  time.

With  that  scene  set,  over  the  last  10  years  or  so,  there's  been  a  lot  of  activity  in  the  UK  around  trying  to  solve  some  of  these  problems.  Something  quite  important  to  my  career  has  been  the   Dial-a-Molecule network.  This  was  formed  in  2010,  and  it  comprises  over  600  members  from  both  academia  and  industry,  and  there's  a  lot  of  industrial  involvements  in  it.  The  real  drive  of  this  network  was  to  change  transform  synthesis  into  a  data- driven  discipline.  The  big  ambition  was,  "Can  we  g et  to  a  future  in  10  or  20  years  where  you  can  predict  a  way  to  make  a  molecule  and  send  those  instructions  to  a  robot,  have  that  do  all  the  synthesis?"  Really  future  thinking.

It's  done  some  amazing  stuff.  One  of  the  things  that  came  out  of  the   Dial-a-Molecule  network  was  my  facility  where  I  manage.  This  is  the  center  for  rapid  online  analysis  of  reactions  at  Imperial  College  London. W e  started  in  2018.  We  first  got  our  foot  in  the  door  and  started  putting  together  the  equipment.  The  idea  is  we  provide  in  one  location  the  combination  of  advanced  equipment  and  a  supporting  team  of  expertise  to  help  chemists,  not  just  from  Imperial  College,  but  from  around  the  UK,  other  universities,  from  small  companies,  large  companies,  elsewhere  in  the  world,  to  come  into  our  lab  and  gain  access  to  the  equipment  and  do  what  I  like  to  call  data- lead  studies  of  chemical  processes.

My  team  are  there.  We've  done  all  the  hard  work,  learning  how  to  run  the  machines,  so  we  can  support  you  on  what  interests  you.  We  don't  have  our  own  research  agenda,  we're  here  to  enable  you  to  do  really  good  science.

In  addition  to  that,  we  also  provide,  obviously,  with  all  this  data,  you  need  good  software  to  analyze  it.  We're  here  today  talking  about  JMP,  and  we  use  JMP  routinely  for  all  our  design  of  experiments  but  also  our  analysis.  We  also  do  a  lot  of  training,  which  is  what  I'm  also  talking  about  here  today.

The  general  things  we  cover  in  the  facility,  we  do  something  called  high  throughput  experimentation.  It's  quite  an  enabling  technology  in  chemical  synthesis  at  the  moment,  quite  an  up  and  coming  field.  But  the  idea  is  instead  of  a  chemist  traditionally  doing  two  or  three  experiments  a  day  in  this  glass,  blasts  and  things,  and  it's  quite  a  manual  process,  we  change  that  up,  and  now  we'll  scale  everything  down  to  a  really  small  scale  and  we'll  do  hundreds  of  them  in  parallel  and  we  use  robots  to  set  up  every  part  of  that  process.  This  allows  us  to  cover  a  much  broader  design  space,  parameter  space,  which  is  really  cool.

If  we're  just  doing  one  experiment,  then  I'd  say  we  do  that  properly  and  we  recognize  that  chemical  processes  are  dynamic,  things  are  changing.  We  use   In-situ  analysis  tools  to  monitor  how  the  chemicals  in  that  system  are  changing  over  time,  how  the  reactions  are  going  on.  We  can  build  detailed  models  of  these  dynamic  processes.  It's  the  thing  that  if  you're  in  chemical  manufacturing,  you  can  take  these  models  and  use  it  to  scale  up  your  process  from  something  small  in  the  lab  to  industrial  scale  manufacturing  reactors.

We  do  a  lot  of  automation.  I  talked  about  the  problem  with  a  lot  of  our  methods  being  non- reproducible.  We're  actively  supporting  users  using  automated  reactors.  The  benefit  of  that  is  the  recipes,  the  way  you  run  it  is  written  in  a  computer  code,  so  it  becomes  very  reproducible.  You  basically  create  a  recipe  and  if  someone  else  is  running  a  similar  reactor,  it  will  be  done  in  the  same  way.  It's  much  better  about  recording  the  information  about  how  it's  actually  done.  Then  finally,  we  support  all  of  this  with  our  design  of  experiments  expertise  and  our  analysis  expertise  to  really  help  students  do  the  right  experiment  first  time  and  learn  lots  from  their  data.

Of  course,  it  would  also  be  remissive  me  not  to  mention  at  this  point  the  REACT  CDT.  This  is  an  initiative  at  Imperial  College  London.  It's  a  training  program  for  doctoral  students and  they  come  through  and  they  learn  about  not  just  chemistry,  but  they  also  do  engineering  and  data  science.  This  is  the  new  way  of  teaching  synthetic  chemists.  It's  really  cool  what  they're  doing.  Since  2019,  there  have  been  47  students  come  through  that  program.  Why  it's  relevant  here  today?  T his  CDT  has  been  core  to  adopting  design  of  experiments  within  chemistry  at  Imperial  College  London.  Every  year,  we  deliver  a  workshop  for  this  group  here,  and  they've  come  along  with  us  on  the  journey.

Why  do  I  think  chemists  should  learn  about  design  of  experiments?  We  go  back  to  this  slide  here,  I  talked  about  the  problems  with  it.  One  factor  at  a  time,  one  factor  is  not  great.  We're  ignoring  our  factor  interactions. W e're  ignoring  the  fact  that  you  can't  study  multiple  factors  independently  if  there's  interactions  at  play.  You  just  end  up  going  round  and  round  in  circles.  If  anyone's  caught  in  these  loop  before  in  a  one  factor  at  time  approach,  it's  really  frustrating.

You  optimize  something,  you  think  you  found  the  right  setting.  You  go  and  optimize  something  else,  you  find  another  setting,  and  then  you  realize  that  you  have  to  go  back  and  re- optimize  the  first  factor.  You  just  go  round  in  circles.  That's  why  it's  problematic.  I  like  to  show  the  chemist  an  example  of  reaction  temperature  and  reaction  time.  Because  as  a  chemist,  this  is  something  that  fundamentally  makes  sense.  These  two  factors  are  intrinsically  linked.  We  have  a  process,  and  if  you  optimize  in  a  one  factor  at  a  time  approach,  the  idea  is,  it's  optimized  temperature.  You  test  a  bunch  of  different  temperatures  with  the  time  fixed  and  you  find  a  maximum,  and  then  you  go  and  do  the  same  with  time.

What  you're  effectively  doing  is  traversing  your  space  in  two  lines  and  you  find  an  optimum.  What  you  completely  ignore  is  everything  that  happens  out  here,  everything  that  happens  out  here.  You  got  a  very  pigeoned- whole  view  of  what's  happening  in  your  space.  These  two  factors  are  intrinsically  linked.  If  you  have  complex  chemical  processes,  if  you  heat  your  reaction  up  to  too  high  a  temperature,  then  you  start  getting  decompositions  and  things  happening.  You  need  to  shorten  your  reaction  time  to  find  the  optimum.

Likewise,  if  you  decrease  your  temperature,  the  whole  process  slows  down,  so  you  need  to  do  a  longer  reaction  time  to  find  your  optimum.  That's  links, a  chemist,  you  can  intrinsically  understand  that  there  is  a  factor  interaction  here.  How  is  this  different  if  we're  doing  design  of  experiments?  We  might  do  something  like  a  three  by  three  full  factorial,  in  which  case  you  do  nine  experiments.  It's  a  very  similar  number  of  experiments.  But  in  this  case,  it's  allowed  us  to  build  a  response  surface  model  covering  the  whole  design  space.  There's  no  longer  these  gaps.  We  can  predict  what's  happening  in  these  spaces  because  of  the  way  we've  built  the  design.  That's  very  powerful  for  understanding  your  system.

I'd  like  to  talk  about  design  of  experiments  in  the  context  of  the  experiment  cycle. Experimentation  cycle  and  how  that  differs  between   DoE and  OFAT.  Standard  cycle,  you  can't  have  an  idea.  Design  an  experiment,  do  the  experiment,  measure,  analyze.  Hey,  you've  learned  something.  You  can  go  back  and  make  a  new  hypothesis  go  round  the  circle  again.  When  we're  doing  an  O FAT  approach,  what  you're  effectively  doing  is  do  that  for  one  factor,  then  for  the  next  factor,  then  the  next  factor,  and  so  on.

You  go  round  and  round  and  round.   DoE has  some  similarities  where  it's  a  iterative  process  still.  But  in  this  case,  what  we  do  in  design  of  experiments  is  we  start  off.  Our  early  experiments  are  really  something  called  a  screening  experiment.  We're  trying  to  test  a  lot  of  factors  at  once  to  work  out  which  ones  really  matter.  To  do  that,  and  it's  not  going  to  tell  you  what  the  optimum  time  is.  But  it's  going  to  tell  you  it's  time  something  you  should  actually  focus  effort  on.  Then  when  you  do  your  follow  up  round,  here  we  go.  I've  crossed,  I've  made  dull,  made concentration  stoichiometry  in  this  particular  example,  determined  that  these  weren't  actually  that  important.

In  your  follow  up  experiment,  you're  going  to  focus  more  experimental  effort  on  those  factors  which  actually  had  an  impact  on  your  response.  You  might  also  start  to  investigate  those  factor  interactions  we  talked  about  earlier.  Here  we  go.  The  benefit  of  taking  a   DoE approach  is  we're  able  to  screen  more  factors  earlier  in  the  process,  and  we  can  do  that  more  efficiently.  I  can't  really  show  it  here  today,  but  we  do  that  more  efficiently  than  if  you  just  screen  lots  and  lots  of  factors  using  an OFAT  approach.

Importantly,  you  can  really  start  to  focus  in  on  those  factors  which  are  most  important, and  focus  your  experimental  effort  on  optimizing  those.  My  seven  reasons  why...  If  the  only  thing  you  take  away  from  this  talk  as  a  chemist  is  these  seven  reasons,  that  would  be  great.

Why  chemists  need  DoE.  Factor  interactions  are  present.  They  do  exist  in  chemistry  and  we  should  be  looking  out  for  them.  If  you're  doing  anything  with  continuous  factors,  now  that's  a  bit  of  a  tricky  one  in  chemistry  sometimes,  but  if  you're  optimizing  continuous  factors,  then  once  you've  seen  what  you  can  do  using  a  design  of  experiments  approach,  you're  going  to  be  so  horrified  at  how  much  time  you  wasted  doing  it  the  old- fashioned  [inaudible 00:20:10]  way.  It  could  be  very  efficient  to  optimize  these  experiments  in  a  DoE  led  way.

You  get  to  focus  your  experiments   on  those  factors  which  are  most  important,  which  actually  affect  your  system.  I  like  the  fact  as  well,  it  also  helps  protect  you  against  outliers  and  nuisance  factors.  There's  a  lot  of  things  we  don't  think  about  using  those  traditional  methods  which  are  built  into  design  of  experiments.  As  you  learn  about  DoE  with  me  on  our  courses,  you  become  aware  of  these  things  and  you  can  start  to  build  them  into  your  designs.

Again,  similar  thing  for  uncertainties.  Chemists  are  rubbish.  Well,  synthetic  chemists  are  rubbish  at  uncertainties.  They're  not  really  that  numerical  about  it.  DoE  handles  that  for  them.  It  forces  you  to  have  a  measure  of  the  uncertainty  in  your  response.  Whereas  a  lot  of  chemists  just  ignore  that  and  just...  Yeah,  it's  not  great.

Maybe  a  really  positive  selling  point  for  chemists  is  that  the  models  you  get  out  of  it,  they  look  really  cool  in  your  thesis.  They  really  boost  your  publications.  If  you  can  show  you've  got  a  model  that  allows  you  to  predict  and  understand  the  system,  that  really  elevates  your  work.  That  could  be  a  real  positive  reason  for  taking  this  approach.

Then  the  final  one,  this  is  a  bit  more  of  an  advanced  technique,  but  when  the  students  get  it,  it's  really  cool  to  see.  I  like  to  use  design  of  experiments  as  a  crystal  ball  to  look  into  my  experiment.  Before  I  actually  do  the  experiment,  I  can  look  into  it  and  understand  what  it's  going  to  be  able  to  tell  me.  I  can  do  thought  processes  around  right  for...

If  my  RMSE,  my  error  levels  about  this,  what  do  I  expect  to  see?  Do  I  have  a  realistic  chance  of  seeing  this  factor  or  not?  I  can  then  modify  the  experiment  to  ensure  that  I've  got  sufficient  power  there  that  basically  I  don't  have  to  go  back  and  do  more  tests  just  because  it  turned  out  that  something's  not  active.  You  can  have  an  educated  guess  going  into  the  experiment  whether  it's  going  to  tell  you  what  you  need  to  know  or  you  need  to  do  a  different  design.  Once  you  get  a  handle  on  that,  it's  really  useful.

Teaching  design  of  experiments  at  Imperial  College  London.  I  guess  when  we  started  this  design  of  experiments  training,  it  was  not  covered  in  undergraduate  courses.  I  think  it's  probably  still  the  case.  If  you  go  over  to  statistics  or  mathematics,  it's  something  that  might  be  done  there.  But  in  chemistry,  no,  we  don't  teach  our  undergraduate  students  design  of  experiments.  I  guess  the  last  couple  of  years,  we've  had  one  lecture  as  a  bit  of  a  guest  lecture  from  industry.  Here's  a  technique  you  might  like  to  know  about,  but  we're  not  quite  there  yet.  We'll  keep  pushing  on  that  one.  Hopefully  in  the  future,  that'll  be  something  which  is  built  into  more  of  these  courses  because  this is  something  they  should  learn  about.

But  DoE  is  considered  an  essential  skill  by  industrial  chemists.  There's  been  increasingly  in  the  UK  a  movement  towards  training  up  our  postgraduate  research  students  with  DoE  skills.  An  example  would  be  the  Dial-a- Molecule  Network.  Pre- COVID  was  running  summer  schools  every  year  at  Loughborough  University.

Part  of  that  summer  school  was  using  design  of  experiments  to  do  an  actual  experiment.  It' s  very  cool,  the  work  that  we're  doing.  These  dots  here  correspond  with  universities,  chemistry  departments  around  the  UK,  which  are  really  coming  along  with  us  on  this  journey  about  data- lead  chemistry  and  design  of  experiments   would  be  part  of  their  courses  as  well.

But  here  at  ROAR,  where  did  we  start?  Back  in  2017,  my  boss,  Professor  Mimi  [inaudible 00:24:13] ,  was  setting  up  a  case  to  build  the  React  CDT.  As  part  of  that,  she  went  out  and  consulted  a  number  of  different  UK  chemical  companies  to  find  out  what  taught  components  should  be  included  in  a  future  proof  postgraduate  training  course  for  chemists.

Interestingly,  72 %  of  the  respondents  said  that  design  of  experiments  was  considered  an  essential  training  component  for  chemists, and  this  was  the  highest  level  they  could  say.  That's  a  really  strong  signal  coming  out  of  our  employers,  basically,  that  design  of  experiments  is  something  we  should  be  teaching  them.

On  the  back  of  that,  JMP  were  very  early  supporters  of  the  React  CDT  in  the  R OAR  facility.  We've  been  very  grateful  for  their  involvement  and  that's  really  helped  us  get  to  where  we  are  today.  In  2018,  we  ran  our  first  workshops  with  JMP.  These  were  two  one- day  in  person  workshops.  The  target  audience  of  those  was...  Both  of  those  were  for  chemistry  graduate  students,  so  we  offer  these  up  to  our  department  first,  but  we  also  opened  it  up  to  other  Imperial  College  departments.  We  had  visitors  coming  over  from  aeronautics  and  a  range  of  different  places  actually.  It  was  quite  surprising  to  see  who  else  was  interested  in  DoE.

A  big  thank  you  to  Volker,  has  been  with  us  from the  start  of  this  journey,  and  has  really  helped  us  come  along  the  way.  Building  on  from  that  early  start,  in  2019,  we  did  more  workshops,  me  and  Volker  and  the  rest  of  the  JMP  team.  Did  a  couple  more  of  those  workshops.  We  opened  them  out  further.  We  did  a  series,  we  did  one  for  our  local  students.  We  also  did  another  one  which  we  opened  out  to  the  Dial-a- M olecule  Network,  and  that  was  quite  well  received.

Ever  since  we  did  that,  we've  had  more  and  more  requests  for  when's  the  next  one  going  to  be?  Unfortunately,  that  was  2019.  By  the  time  we  got  organized  to  run  another  one,  then  the  world  had  changed,  as  we  all  know.  But  anyway,  in  early  2020,  just  before  the  world  changed,  we  did  modify  our  workshops.  We  changed  from  a  one- day  workshop  to  a  two- day  workshop,  and  that  was  the  start  of  this  doctoral  training  program.

We  realized  at  that  point  that  we  were  having  trouble  fitting  in  the  level  of  content  we  thought  the  students  deserved  into  one  day.  W e  expanded  to  two  days  to  give  us  a  bit  more  time  to  include  a  bit  of  theory  with  the  more  hands- on  part  of  the  workshop.   That  was  great.  We  had  a  great  little  two- day  session.  The  students  did  some  wonderful  stuff.

Unfortunately,  I  forgot  to  include  some  photos  here,  but ...  2020  then,  the  world  changed,  COVID  hit,  and  everything  went  online.   We  turned  our  two- day  workshop  into  a  virtual  session,  three  times  three- hour  sessions  for  the  following  years.   Where  we  had  people  coming  to  us  asking,  when is  the  next  open  workshop  going  to  be,  we've  been  encouraging  them  to  use  the  statistical  thinking  for  industrial  problem  solving   online  course  offered  by  JMP.  I'd  still  say  that  it's  a  very  good  course.  I  went  and  did  it  myself  to  boost  my  own  skill  levels  a  few  years  ago  over  COVID.  It  is  a  really  good  introduction  to  the  subject.  If  anyone  is  looking  for  how  to  get  started,  that's  probably  where  I'd  send  you.

Okay, moving  on.  In  2022  then,  this  is  when  I  feel  like  I  suddenly  found  my  own  feet  as  teaching  design  of  experiments.  We  developed  a  postgraduate  taught  module  in  design  of  experiments  for  our  new  digital  chemistry  MSc  degree.  By  the way,  I  say  me  and  my  associates  here  in  Imperial  College  London.  This  is  taught  independently  by  me  with  a  few  guest  speakers.  That's  been  great.  We're  in  the  second  year  of  that  now,  and  it's  really   improving  the  content  of  our  teaching  materials  as  we  go.

Then  most  recently,   I  don't  know,  three  weeks  ago,  four  weeks  ago,  we  had  Volker  back  over  at  Imperial  College  London  for  our  first  in  person  workshop  since  COVID,  and  that  was  for  the  CDT,  and  that  was  great.  It  was  great  to  get  the  students  back  in  a  room  and  have  them  working  in  small  groups  again,  because  there's  a  level  of  interaction  that  is  just  really  hard  to  replicate  in  those  online  sessions.

I  would  say  over  the  course  of  since  2018,  we've  managed  to  introduce  design  of  experiments  to  about  200  scientists  and  engineers.  Most  of  them  will  be  PhD  students.  There's  a  fair  number  of  postdocs  associated  with  that,  but  also  some  industrial  scientists  which  came  along  to  our  externally  available workshops.   We  hope  to  double  and  triple  those  numbers  in  the  coming  couple  of  years  as  we're  looking  to  open  up  again  now  that  COVID's  passed.

What  do  our  workshops  look  like?  Here's  an  example  from  our  recent  two- day  workshop.  These  things,  we  always  tweak  them  a  little  bit  every  year,  trying  to  find  the  optimum.  This  is  the  most  recent  one  we  ran.  On  the  day  one,  we'll  do  a  bit  of  an  introduction  today  about   why  they  should  know  about  design  of  experiments.  We  teach  them  about  analysis  of  variance.  The  idea  as  they  come  in,  we  don't  expect  any  existing  knowledge  about  statistics.  We  really  teach  them  how  to  use  it  and  try  and  give  them  enough  of  a  background  that  they  can  get  where  it  comes  from.  Same  with  linear  regression.  We  do  a  bit  of  factorial  experimentation  and  screening  experiments,  a  lot  of  hands- on  exercises  as  well.

A gain,  we  also  spend  quite  a  bit  of  time  that  first  day  talking  about  evaluating  designs.  This  is  probably  the  most  advanced  concept  we  handle,  and  it's  probably  the  trickiest  one  for  them  to  get.  But  when  they  get  it,  it's  really  quite  powerful  to  them.  If  they  can  understand  the  power  of  their  experiments  before  they  do  it,  that's  a  very  useful  tool.  Then  we  end  the  day  with  definitive  screening  designs.  There's  some  great  exercises  JMP  provided  us  with  for  that.

Day  two,  then  we're  getting  in  more  into  response  surface  modeling  using  custom  design  in  JMP  or  optimal  design  if  we  want  to  be  a  bit  more  vendor  neutral.  We  teach  them  about  design  augmentation,  building  robust  designs.  That's   the  morning session,  and  then  the  afternoon,  we  leave  it  a  bit  more  flexible,  depending  on  how  time  is  going.  We're  either  catching  up  on  things  we've  not  quite  covered  yet,  or  if  there's  time,  we  like  to  do  a  bit  of  sign posting  of  more  advanced  techniques.

It's  simply  not  possible  to  cover  all  of  these  well  in  a  two- day  workshop.  We  make  sure  that  we  make  them  aware  that  these  are  things  that  are  out  there  so  that  when  they  go  into  their  individual  research  projects,  if  they  see  an  opportunity  to  use  something,  they  know  the  terminology   and  they  can  go  out  and  read  a  bit  more  about  it,  or  come  and  talk  to  me  in  our  facility  and  we'll  help  them  out.

It's  really  about  sign posting  and  making  sure  they've  got  the  right  vocabulary  so  they  know  what  they're  looking  for.  We  also  include  quite  a  good  discussion  about  tips  and  tricks,  where  to  get  started,  and  extra  reading.  All  throughout,  this  is  all  delivered  as  a  combination  of  presentations,  demos  of  the  software,  and  most  importantly,  the  thing  that  really,  I  think,  cements it  is  these  hands- on  exercises,  doing  problems  with  the  JMP  software.

JMP  has  been  fundamental  in  helping  us  build  up  our  workshops  and  our  teaching  modules  over  the  years.  In  the  early  days,  they  developed  a  lot  of  the  initial  discipline- relevant  exercises,  and  then  I'll  be  able  to  learn  from  them  and  build  my  own  exercises  as  I  go  on.  Same  with  the  slide  decks.  A  lot  of  my  slides  now  are  fully  customized,  but  you'll  still  see  the  occasional  slide  which  is  one  that  Volker  has  provided  me  with.  It's  still  there  in  the  slide  deck,  it's still  getting  reused  all  these  years  later.  But  we're  continually  developing  these  things.

It  was  really  helpful  to  us,  the  fact  that  JMP  provided  us  with  trainers  to  support  the  workshop  delivery.  In  the  early  days,  they  really  do  take  a  train  the  trainer  approach.  Right  at  the  start,  Volker,  Ian  Cox,  Robert  Anderson,  would  come  along  and  always  they  run  the  workshop.  I'm  just  there  hovering  around  the  background,  making  sure  the  students  have  got  access  to  the  software,  learning  what  I  can,  even  learning  myself  at  the  same  time.

As  we've  gone  on  through  the  years,  basically  I've  been  able  to  gain  confidence  by  co- leading  workshops  with  them,  and  now  we're  at  the  stage  where  I'm  still  very  grateful  to  have  Volker  come  in  and  co- lead  the  workshop  with  me.  But  I'm  also  quite  happy  to  go  on  and  do  my  own  thing  as  well.   That's  been  great,  being  able  to  go  on  that  journey.  I  really  do  need  to  thank,  not  just  Volker,  but  Ian  Cox  as  well  was  there.  I  think  Ian  was  there  for  our  very  first  workshop,  same  with  Robert  Anderson.  Hadley  Myers  has  also  stepped  in  as  well  to  help  us  at  times.  Big  thank  you  to  all  of  these  JMP  people  for  their  support  over  the  years.

The  DoE  Role Playing  Game,  I  guess,  what  you're  here  for  today.  Where  did  this  come  from?  In  our  early  workshops,  we  had  a  Heck  reaction,  an  interactive  exercise.  This  was  actually...  As  far  as  I  know,  it  was  developed  by  Ian  Cox,  and  it's  all  written  in  JMP  script.  The  idea  is  you  got  this  reaction  here  and  you  send  it  to  the  students,  you  say,  "Right,  these  are  your  starting  settings.  Here  are  your  sponsors.  Here  are  your  factors.  Here's  the  range  you're  allowed  to  test  them  over.  Design  an  experiment, and  this  exercise  will  generate  the  data  for  you  for  the  design  you've  chosen."

It's  a  really  useful  tool  and  a  guided  workflow.  The  students  go  through  and  they  select  which  factors  they  want  to  test.  They  can  specify  limits.  One  of  the  limitations  is  I  think  it  only  works  with  custom  design.  Then  build  the  design  and  then  it  uses  a  model  under  the  hood.  It's  just  running  a  mathematical  model  and  I've  [inaudible 00:35:14]   a  lot  of  these  values  here.  In  the  past,  I  was  using  the  same  model  for  some  of  my  teaching  and  didn't  want  the  students  to  know  about  what  the  actual  factor  setting,  what  the  factor  parameters  were.  Also,  in  case  anyone  else  has  got  access  to  this,  I'm  not  giving  away  the  secret.

But  this  is  what's  happening  under  the  hood.  It's  basically  using  a  mathematical  model  and  it  plugs  in  your  factor  settings  and  it  will  calculate  the  responses  for  you.  It's  able  to  do  that  and  generate  a  table  with  the  calculated  responses.  As  a  tool,  that's  really  useful  for  teaching  the  chemist  because  they  can  play  with  it.  They  can  do  different  designs  and  see  different  data  sets  and  do  the  analysis  and  it's  very  hands- on.

When  I  saw  this,  it  was  amazing.  It  was  like,  right,  this  is  a  really  useful  tool  for  teaching  design  of experiments.  This  is  the  way  it  should  be  done.  Not  just,  "Here's  the  data  set,  go  and  analyze  it."  But  going  through  that  whole  process  from  design  to  get  the  data  to  analyze.  It's  a  very  nice  platform.  But  there  were  some  limitations.

Running  it  over  a  few  years,  we   generally  found  that  the  setup  of  the  exercise  could  be  prone  to  installation  errors.  I  guess  installing  software  on  30  individually  student- owned  computers  is  always  going  to  be  problematic.  You  got  different  operating  systems,  different  levels  of  following  instructions,  and  there's  always  problems.  But  the  most  problems  we  had  were  trying  to  get  this  particular  exercise  going.  It  was  an  amazing  piece  of  work,  but  it's  not  fundamentally a  JMP  software.  It's  something  that's  been  hacked  together  in  the  scripting  language, and  so  it's  very  difficult  to  support  that  in  a  short  workshop  session.

The  danger  was  as  well,  if  it  didn't  work  for  a   particular  student  then,  they  become  a  bit  disengaged  from  the  process  and  you  lose  them.  That  was  one  of  the  problems.  The  other  one  we  had...   Two  problems  that  came  together  is  as  we're  going  on,  I  wanted  to  start  tweaking  the  model.  We  had  to  be  very  careful  because  we  got  multiple  responses  in  this  model.  In  this  case,  I  guess  I  didn't  spend  a  lot  of  time  showing  it  to  you,  but  we  talk  about  a  product  and  a  by-product  and  remaining  [inaudible 00:37:37]  material .

It  was  possible  to  get  results  that  didn't  make  sense.  Basically,  we  could  break  the  mass  conservation  laws  and  end  up  with  a  situation  where  you  had...  Some  of  the  materials  came  to  too  much.  This  is  just  by  way  of  the  way  the  responses  are  calculated.  Each  has  their  own  little  model  to  calculate.  Whereas  in  a  chemical  system,  we've  got  one  thing  going  down,  something  else  coming  up.  It  couldn't  quite  handle  that  as  reliably  as  I'd  like  to  give  a  real  chemistry  scenario.

I  guess  the  other  one  as  well  is  I  wanted  to  be  able  to  start  modifying  this.  I  needed  to  make  more  examples  for  student  assessment.  I  could  just  give  15  students  all  the  same  exercise  and  they'll  just  all  give  you  the  same  answer  back.  You  want  to  give  them  something  slightly  different  and  be  able  to  customize  things  a  bit.

I  did  also  think  one  of  the  other  limitations  was  by  fixing  those  factors   at  the  start  of  the  exercise,  it  did  limit  the  student's  creativeness.  We  almost  gave  them  the  solution  and  said,  "Right,  here's  the  five  factors  you're  allowed  to  play  with,"  and  just  left  it  at  that.  I  wanted  to  try  and  get  away  from  that.  This  is  where  my  version  of  the  Heck  reaction  came  in.  It's  not  quite  as  elegant  as  the  JMP  scripting  version,  but  has  a  bit  more  freedom  in  it.  What  we  do  is  we  have  a  problem  and  we  set  this  problem  in  a  free  text  form.  I  give  them  a  couple  of  paragraphs  of  text,  I'll  show  you  one  a  bit  later,  and  a  single  data  point,  and  it's  a  starting  point.

The  idea  is  a  student's  working  group,  we  ask  them  to  define  the  problem,  and  almost  they've  got  a  bit  of  freedom  to  define  the  problem  as  they  want  it.  We  give  them  a  bit  of  a  lead  and  say,  "The  fictional  client  is  interested  in  this,"  but  we  really  give  them  a  lot  of  freedom  to  find  a  problem  that  they  want  to  investigate.

We  encourage  them  to  ask  questions  and  then  as  a  group,  build  their  designs  for  their  experiments.  A  lot  of  freedom  is  given.  They  can  define  their  problem  as  they  want.  They  can  define  which  factors  they  want  to  test.  How  does  this  work?  How  can  you  do  an  exercise  like  that?

I  guess  the  secret,  the  way  you  make  it  work  is  you  build  the  model  dynamically.  You  start  off  with...  Or  you  start  off  with  that  at  the  start  as  an  intercept.  That's  the  single  data  point  they're  given  at  the  start.

Then  as  the  student  group  comes  to  you  and  says,  "W e  want  to  do  an  experiment  on  these  factors  here."  You  quickly  go  away  and  build  up  your  own  little  model  and  say,  A  little  bit  of  this,  a  little  bit  of  that.  Here  we  go.  Make  the  equations  and  then  plug  in  their  design  into  that  and  generate  the  data.  Of  course,  we  had  uncertainty  there.

That's  the  process.  The  idea  is  to  get  the  students  to  go  around  this  cycle  a  few  times.  Because  they  can't  control  exactly  what  you're  giving  them,  there's  a  bit  of  uncertainty  there.  They  need  to  treat  it  as  though  it's  a  real  experiment  and  see  what  they  can  learn  about  the  system  upfront  and  then  design  sensible  experiments  instead  of  just  trying  to  run  and  get  to  the  solution  as  quickly  as  possible.

How  do  we  set  the  scene?  This  is  an  example  from  the  course.  We  talk  about  our  fictional  company,  our  client,  ACME  Pharmaceuticals,  a  major  manufacturer  with  their  own  R&D  division.  It's  all  just  a  bit  of  flavour  text  to  give  the  student  something  to  bounce  off.

We  say  that  they're  interested  in  Design  of  Experiments.  They  want  to  test  out  DoE  in  a  range  of  different  projects,  but  importantly,  they  have  no  expertise  in  this  area  themselves.  They're  great  chemists,  don't  know  about  DoE.  You  need  to  treat  them,  not  like  idiot s,  but  you  need  to  take  them  along  on  the  journey  and  explain  concepts  to  them  really  well.

I  guess  the  other  thing  I  got  a  great  links  to  tell  the  students  is  that  the  client  is  being  a  bit  awkward  and  is  saying,  "Look,  we're  not  going  to  give  you  the  chemical  structures."  This  might  sound  like  a  bit  of  a  bonkers  thing  to  do.  Why  would  you  build  this  into  the  problem?

The  reason  is  I  don't  want  the  students  to  try  and  solve  the  problem  through  the  literature.  My  fear  when  I  set  this  up  initially  was  if  I  give  them  a  substrate,  they're  going  to  spend  hours  and  hours  reading  the  literature,  trying  to  find  previous  examples  and  solve  it  that  way.  What  I  want  to  put  the  emphasis  on  is  the  design  process,  designing  experiments,  analyzing  the  data.

I  want  them  to  focus  more  on  that  than  going  out  and  just  reading  lots  of  papers.  I  took  a  deliberate  decision  to  hide  the  structures  from  them.  You'll  see  how  that  works  in  a  couple  of  slides.  We  also  tell  them  they're  consultants  and  they  can  trust  the  lab  technicians,  so  don't  worry  about  the  quality  of  the  experiments.  If  you  give  an  experiment  a  design  set,  it's  going  to  be  run  in  a  high- quality  way.  Take  away  those  fears.

Again,  we  say  they're  enthusiastic  about  DoE,  but  they've  got  no  prior  knowledge,  so  they  need  to  have  things  explained  to  them.  What  does  the  project  look  like?  Here's  an  example  here.  We  say  ACME  Pharmaceuticals  are  developing  anti-parasitic  agents  for  the  treatment  of  face huggers.  If  any  of  you  have  heard  or  seen...  If  you're  old  enough  to  remember  theme  hospital,  that's  where  that  comes  from.

But  they've  got  a  candidate  molecule  going  into  pre- clinical  testing  and  need  to  optimize  the  synthesis  of  their  final  step.  I t's  very, very  wordy.  I'm  trying  to  give  them  something  to  sink  their  teeth  into  and  turn  into  a  problem  rather  than  dumbing  it  down  for  them.

Also,  give  them  some  information  about  the  equipment  they' ve  got.  This  was  a  bit  of  a...  Last  year  when  I  did  it,  the  idea  was  I  was  trying  to  lead  them  on  to  thinking  about  blocking  of  some  of  the  positions  in  the  reaction,  things  like  that.

They  missed  the  hint  last  year,  so  this  year  I've  made  it  a  bit  more  explicit  and  said  that  the  chemists  have  anecdotal  evidence  that  the  reaction  results  can  vary  between  positions.  I'm  really  trying  to  give  them  a  hint  that  think  about  blocking,  think  about  some  of  these  slightly  more  advanced  techniques.

We  also  include  multiple  sponsors.  Otherwise,  it's  quite  handy  to  have  multiple  sponsors.  It  allows  you  a  bit  of  freedom  to  make  the  problem  a  bit  more  difficult  to  optimize.  If  you  make  it  too  easy,  they  just  charge  towards  the  final  answer  and  then  they  lose  interest.  You  need  to  make  it  a  little  bit  difficult  for  them  to  keep  them  trying  to  optimize  it  more.

I  deliberately  pick  slightly  complex  reactions.  There's  a  lot  of  factors  involved.  There's  a  lot  of  uncertainty  around  it.  Then  I  also  obscure  the  chemical  structures.  The  idea  being  we're  telling  them  that  complex  structures,  there's  unusual  reactivities.

Go  and  read  the  paper.  Read  the  paper  for  some  inspiration  about  what  factors  you  should  be  looking  at.  But  don't  trust  that  you  can  look  through  what's  been  done  previously  and  go,   well,  it's  probably  going  to  be  these  settings  and  these  settings,  which  is  the  right  ones  because  these  are  unusual  substrates  you're  working  on.  They're  going  to  behave  a  bit  differently.  That's  the  way  we  set  the  scene.

We  give  some  general  tips  to  the  students.  We  say  you  should  read  the  literature  for  inspiration  about  the  factors  that  could  be  affecting  your  response. A lso,  lean  into  the  exercise  as  a  bit  of  a  game.  If  they  go  away  and  they're  reading  about  something  and  they  think,  Oh,  I'm  expecting  when  I  change  this  factor,  it's  going  to  have  this  effect  on  the  response.

I  encourage  them  to  tell  me  about  that.  T hen  it's  up  to  me  as  the  instructor  about  whether  I  go  with  that  and  like,  Yeah,  we'll  build  that  in,  build  it  into  the  model,  or  go  the  other  way  and  do  something  else  entirely.  But  we  bounce  off  each  other  a  bit.  I  do  go  to  great  lengths  to  say,  "Don't  expect  to  find  the  answer  in  the  literature.  It's  not  a  review  in  the  literature  exercise,  it's  a  design  of  experiments  exercise."

Really  encourage them  to  do  the  empirical  experimentation  without  the  hard  part  of  running  the  actual  reactions.  Encourage  them  to  ask  questions.  We  talk  about  the  fact  that  the  data  is  generated  with  noise,  just  something I have to  make  explicit  so that  they  accept  a  bit  of  fuzziness  in  it.

I  also  tell  them  as  well,  a  bit  of  a  hint,  if  they  try  and  make  their  factor  ranges  too  wide,  it's  going  to  break  the  system  and  it'll  just  return  them  reaction  didn't  run,  this  didn't  happen. F ind  some  reason  why  particular  data  points  didn't  work.

What  lessons  have  we  learned?  I  guess  more  generally  first,  barriers  to  teaching  Design  of  Experiments  in  chemistry.  The  first  one  I'd  say  is  buy-in of  supervisors.  You're  in  a  situation  where  your  senior  staff  members,  they're  all  used  to  using  one  factor  at  a  time,  and  you  need  to  recognize  that.

I  guess  you  need  to  be  very  aware  as  well  that  all  it  takes  is  one  bad  experience  with  Design  of  Experiments  and  that  can  put  them  off  forever.  We're  very  aware  of  that  and  we're  very  careful  to  manage  that.

Our  solutions,  what  we've  been  doing,  we  encourage  the  supervisors  to  come  on  the  workshops.  Even  our  two- day  workshop,  we'll  try  and  make  the  first  day  to  be  almost  an  introduction  so  they  can  come  along  on  the  first  day,  learn  a  little  bit  about  how  it  works and  if  they're  aware,  if  they  know  a  bit  about  it,  then  suddenly  it's  not  so  scary.  Now  understand  a  bit  more  about  where  we're  coming  from.

Make  sure  we  include  relevant  case  studies.  Importantly  as  well,  we  have  a  lot  of  discussion.  We  make  sure  the  students  know  about  the  limitations  of  Design  of  Experiments.  I'm  very  quick  to  stress,  it's  not  a  magic  bullet.

The  danger  is  always  we  talk  about  the  amazing  things  you  can  do  with  DoE  and  students  go  away  thinking,  Oh  yeah,  it's  going  to  solve  all  my  problems.  Well,  hang  on,  hang  on.  We  stress  where  it  works  well  and  where  it  doesn't  work  so  well.

We  also  have  to  deal  with  the  statistical  vocabulary  of  the  students.  They're  chemists.  They  don't  do  statistics  as  part  of  their  undergraduate.  It's  not  in  a  standard  chemistry  undergraduate  course.  Our  solution s  there,  we  need  to  develop  our  teacher  materials  in  such  a  way  that  they  work  for  people  coming  in  at  a  very  basic  level.

We  focus  on  a  few  key  statistical  measures,  things  like  analysis  of  variance  and  linear  regression  modelling.  We  try  and  keep  to  relatively  simple  test  first  and  then  build  on  from  that  if  they  choose  to  do  go  further  with  it.

Provide  lay  explanations  where  we  can.  These  lay  explanations  might  not  always  be  to  the  statistician  the  best  way,  but  as  a  learner,  it  can  be  quite  a  useful  way  of  grasping  a  concept  as  a  starting  point.  We  highlight  a  lot  of  additional  resources.  It's  about  getting  them  enough  vocabulary  that  can  then  go  on  their  own  learning  journey,  like  I've  done  over  the  last  few  years.

Then  the  final  major  barrier  we  encounter  is,  how  do  I  use  this  in  my  research  type  question.  Our  new  users  can  sometimes  struggle  to  see  how  dear  we  can  relate  to  their  research  problems.  Often  this  comes  down  to...

We  put  a  lot  of  emphasis  on  continuous  factors  in  our  workshops  because  they  are  the  ones  which  work  quite  well.  But  we  also  talk  about  categorical  factors.  Unfortunately,  in  chemistry,  we're  still we  still  optimize  a  lot  of  categorical  factors.  We  do  have  to  handle  that  and  make  sure  those  students  know.  We  have  that  conversation  with  them,  so  they  see  the  strengths  and  weaknesses  of  the  approach.

It  really  is  about  having  those  discussions,  providing  context,  and  also  continuous  support.  My  facility  is  here  to  support  students,  not  just  with  the  initial  training,  but  we  encourage  them  as  they're  doing  their  research  projects to  come  back  and  talk  to  us  about  their  Design  of  Experiments  so  we  can  support  them  with  it.

If  you  want  to  think  more  specifically  about  the  DoE  role- playing  game,  what  lessons  have  we  learned?  We're  only  in  the  second  year  of  running  this,  so  it's  still  a  bit  premature  to  be  deciding  if  this  is  working  or  not.  But  my  initial  take  on  it  is,  I  think  the  benefits  I've  gained,  the  flexibility  of  the  way  I  build  that  model  dynamically,  it  does  bring  an  extra  element  to  the  course.

Basically,  I  can  encourage  the  students  to  just  explore  factors  and  be  a  bit  creative.  That  flexibility  there,  it  creates  a  bit  of  uncertainty  for  them,  encourages  to  think  about  it  a  bit  more,  discuss  it  a  bit  more,  rather  than  just  charging  on  and  doing  a  very  simple  design.

I  get  real- time  feedback  on  what  the  students  are  picking  up  and  learning.  This  is  one  of  the  things  I  found  last  year,  why  I've  modified  my  course  a  little  bit.  When  I  ran  it  last  year,  I  got  a  lot  of  classical  designs.

The  first  designs  were  fractional  factorials  and  things  like  that.  I  guess  that  was  what  I'd  just  taught  them.  So it  was  what  they  jumped  in  and  did  initially,  whereas  I  was  hoping  I'd  see  some  definitive  screening  designs  and  some  custom  designs  and  something  a  bit  more  modern,  but  actively  modifying  the  course  to  make  sure  that  they're  learning  the  relative  strengths  and  weaknesses  of  different  approaches.

As  an  instructor,  I  like  the  fact  I  can  increase  or  decrease  the  difficulty  dynamically  to  suit  the  group.  This  is  something...  When  I  first  proposed  this  way  of  teaching  the  course,  I  had  a  lot  of  senior  colleagues  telling  me,  "Why  don't  we  actually  do  the  experiments?"  "Why  don't  we  go  and  use  all  our  fancy  instruments  in  raw  and  run  actual  experiments?"  I'll  push  back  against  that  a  lot.

My  concern  with  that  is  either,  one,  we  have  to  dumb  things  down  so  much  to  guarantee  it's  going  to  work,  or  we  end  up  doing  really  expensive,  complicated  experiments  and  then  having  to  hold  back  the  data  and  not  publish  it  so  that  we  can  use  it  in  a  workshop.  N either  situation  quite  works.

This  approach  here  gives  me  the  benefit  of  both.  I  can  make  things  more  complex  as  I  need  to  to  give  the  students  more  opportunities  to  grow  their  skills.  But  if  we're  not  quite  getting  them  to  where  they  need  to  be,  we  can  rein  it  back  a  little  bit  and  ensure  they  get  something  that  they  can...  Data  they  can  analyze  and  that  can  be  assessed  on.  Y eah,  that  control  over  the  level  of uncertainty  and  unknown  is  really  useful.

The  challenge  then,  it's  time- consuming.  I'm  not  sure  I'd  have  done  it  this  way  if  I  knew  from  the  start  how  challenging  that  was  going  to  be.  It  requires  an  instructor  that  knows  both  the  subject  and  Design  of  Experiments.  You  need  to  be  able  to  build  intelligent  models  on  the  fly.

Time- consuming.  I  guess  as  we  go  on,  once  I've  got  a  model  already,  it's  not  too  bad.  You  can  lean  on  your  past  experience  and  build  models  quite  quickly.  But  when  you're  coming  up  to  a  new  situation,  it  takes  a  while  to  figure  out  how  to  do  it.

I  think  for  the  students,  one  of  the  things  we  found  is  it  can  be  a  bit  of  an  unfamiliar  format  for  them,  so  you  do  have  to  spend  a  bit  of  extra  time  as  well,  not  necessarily  calming  them  down,  but  reminding  them  that  the  point  is  not  trying  to  get  a  good  answer.  The  point  is  demonstrating  your  knowledge  of  the  subject  and  using  it  as  a  tool  to  explore  different  options  around  Design  of  Experiments.

Wrapping  up,  hopefully,  we're  okay  for  time.  I  guess  if  you  want  to  learn  more  about  JMP,  these  are  our  further  info  slides  that  we  show  all  our  students  at  the  end  of  the  workshop.  We  really  encourage  people  to  go  and  look  at  the  JMP  Learning  Library.  The  one- page  guides  are  really  useful  for  getting  to  grips  with  new  topics.  That  statistical  thinking  online  course  is  really  good.  If  you  want  to  intro  to  DOE,  go  and  do  that.

Again,  Statistics  Knowledge  Portal.  I  found  that  really  useful  as  well  for  brushing  up  some  of  my  vocabulary  on  some  of  these  basic  techniques.  Then  the  blogs,  the  forums,  the  online  documentation,  it's  all  a  very  useful  resource  for  learning  about  software,  Design  of  Experiments,  in  general.  It  is  really  helpful,  really  good.  I'd  encourage  you  to  go  and  have  a  look  at  it.

I  guess  this  then  remains  to  my  own  acknowledgements.  If  you  want  to  learn  more  about  ROAR,  I'd  encourage  you  to  go  to  our  website,  search  for  Imperial  Roar.  Don't  search  for  Roar  itself,  you'll  get  Katy  Perry,  add  on  Imperial  find  us.  Join  our  mailing  list  or  send  me  an  e-mail,  roar@imperial. ac.u k.

Thank  you  to  our  sponsors,  the  UK  Funding  Councils,  jMP,  of  course,  has  been  with  us  along  the  journey,  and  a  bunch  of  different  other  chemical  companies  and  instrument  vendors  that  have  supported  us. T hen  particularly  at  JMP,  I'd  like  to  acknowledge  Volker Kraft,  Ian  Cocks,  Robert  Anderson,  and  Hadley  Myers  for  their  support  through  this  journey. T hank  you  for  your  time.