Choose Language Hide Translation Bar

JMP for Troubleshooting and Engineering Change Assessment in Point-of-Use Gas Abatement Equipment - (2023-US-PO-1486)

Troubleshooting faults in industrial equipment can be a daunting task, particularly when compounded by the time constraints of a high-volume production line or plant. Analysis is further complicated in equipment with multiple operating modes, where issues may be visible in one mode but masked in another due to differences in operating parameters. The data generated by SCADA (Supervisory Control and Data Acquisition) or networked IoT equipment and sensors in a modern plant can provide a rich source of information for both fault troubleshooting and monitoring change assessment. However, the sheer volume of data for even a single piece of equipment requires complex analysis to be made intelligible for the engineer or technician.

 

This presentation elucidates a selection of examples using JMP for exploration and visualization of abatement equipment operating parameters for fault identification and engineering change assessment. Basic data visualization was used to identify physical phenomena happening within the abatement system to assess the root cause for fault troubleshooting. More advanced analyses, including clustering and variability charts, were used to identify issues related to specific operating modes and to assess the impact of engineering changes.    

 

 

Good  morning,  everybody.

My  name  is  Chris  Jackson.

I  am  an  Applications  Engineer for  Centrotherm.

We  design  and  build  point-of-use   gas  abatement  systems

for  use  in  the  semiconductor   and  other  industries.

Today,  I  have  the  opportunity   to  give  a  short  presentation

on  how  we  found  a  space  for  JMP   in  our  part  of  the  industry

and  how  it  helps  us  both  in  troubleshooting

for  industrial  applications

as  well  as  for  assessment

and  justification  of  continuous  improvement  initiatives,

engineering  changes,  things  like  that.

A  little  bit  of  background   just  to  get  everyone  on  the  same  page,

I  want  to  say  a  couple  of  words  about what   point-of-use  abatement  systems  are.

I've  got  a  little  cutaway   of  one  of  our  tools  here  on  the  side.

The  short  version  is  this:

you've  got  a  manufacturing  tool   up  on  the  factory  floor

doing  whatever  it's  doing in  the  semiconductor  manufacturing  process

that  produces  harmful  gasses   as  a  byproduct,

greenhouse  gasses, toxic  gasses,  flammable  gasses.

Generally,  things  you  don't  want   to  go  in  the  atmosphere.

Then  our  tools   take  those  waste  gasses  in,

they  destroy  them   through  thermal  energy,

they  wash  them  out,

and  you  release  clean  air   to  the  factory  exhaust.

Because  these  tools   are  safety  and  environme nt-critical,

a  fault  in  one  of  them

means  that  your  production  line   is  at  least  in  part  shut  down.

If  you  can't  treat  your  byproducts, then  you  can't  run.

In  a  high- volume   manufacturing  environment,

as  so  many  semiconductor  FABs  are,

even  small  delays  are  incredibly  costly.

We  as  suppliers  and  servicers,

have  to  have  a  means   to  quickly  identify  problems

and  bring  the  tools  back  online.

Historically,   troubleshooting  usually  means

opening  the  tool,

looking  visually   to  identify  failing  components

often  after  some  period   of  root  cause  analysis.

But  with  a  modern  FAB  environment

and  the  data  generated   by  SCADA  or  IoT  systems,

we  have  mountains  of  data  available to  investigate  faults

before  we  ever  touch  the  equipment.

That  gives  us  a  way  to  guide troubleshooting  in  the  field,

and  in  some  cases  for  intermittent  faults,

it  even  lets  the  factory  keep  running while  we  investigate  digitally

rather  than  physically

minimizing  the  time  lost to  troubleshooting  and  investigation.

The  problem  with  this  mountain  of  data is  a  scale  issue.

The  higher  the  resolution  of  your  data,

the  better  look  you  can  get   at  what's  happening  instantaneously

in  any  of  these  pieces  of  equipment.

That  higher  resolution  however, comes  with  an  overhead.

You  need  more  and  more  computing  resources to  effectively  analyze  it,

and  that's  where  JMP  comes  in  for  us

with  the  capacity  to  handle   very  large  data  sets,

and  it  becomes  a  tool   for  visualization  and  exploration

that  can  really  drastically  improve troubleshooting.

It  lets  an  engineer  or  a  technician

quickly  explore   and  visualize  important  parameters

within  your  data  sets,

and  these  data  sets  are  at  a  scale sometimes  that  are  just  unmanageable

for  a  lot  of  other  visualization  tools.

With   that, I  want  to  jump  right  into   the  first  example  case  we  have  here,

and  we're  going  to  identify an  intermittent  single- component  failure

just  through  data  visualization.

No  statistics,  no  modeling,

just  the  ability   to  sift  through  and  visualize  the  data.

Here  we've  got  a  chart   showing  ionization  current  versus  time.

It's  one  of  a  number  of  parameters, ionization  current,

that  we  use   as  a  health  monitor  for  the  equipment.

This  tool  was  having  issues in  which  it  would  run  for  a  couple  of  days

and  then  seemingly  randomly fail  and  shut  down.

For  context,  this  current  should  be a  flat  horizontal  line  at  25.5,

so  it's  pretty  clear  from  the  outset that  we  have  a  problem.

It's  also  pretty  clear  what  I  was  talking  about

regarding  data  set  size.

This  data  set  right  here   is  almost  six  and  a  half  million  rows.

Six  and  a  half  million  rows  with,

when  you  pull  in   all  of  the  tool  parameters,

500  columns.

The  file  for  this  data  set   is  about  20  gigabytes  in  size,

absolutely  massive  amounts  of  data.

Before  we  even  do   any  statistical  analysis,  like  I  said,

we  can  start  to  do   some  problem- solving  off  of  this  data  set

just  with  visualization.

Initially,  it  doesn't  really  look  like there's  any  clear  shape  to  this  data.

We  know  something's  wrong, but  we  don't  know  what.

But  when  we  zoom  in,

all  of  a  sudden   we  start  to  see  some  structure.

This  looks  pretty  periodic  to  me.

We  zoom  in  a  little  bit  more

and  we  see  that  it  is  in  fact very  periodic.

Each  one  of  these  little  spikes  down, disregarding  magnitude,

is  timed  five  minutes   almost  exactly  from  each  other.

That  immediately  begs  the  question  then, do  we  have  some  component,

a  valve,  a  flow  controller,  a  motor,

something  that  actuates   every  five  minutes?

We  identify  that  component.

Now  we  have  a  really  likely troubleshooting  culprit.

The  troubleshooting  plan  changes from  open  the  tool  and  investigate,

which  could  take  a  couple  of  hours,

to  open  the  tool   and  change  this  one  targeted  component.

We  just  shrunk  the  actual  time   that  we  need  to  be  in  the  equipment

from  a  couple  of  hours   looking  at  everything

to  see  what  might  be  failing

to  a  single  hour,  get  in  there,   change  this  part,  get  back  out.

In  this  particular  case, that  was  the  failing  component,

we  were  able  to  identify  it.

Problem  identified,  plan  made without  ever  having  to  open  the  equipment.

We  were  able  to  get  there   with  just  the  conclusions

that  we  were  able  to  draw   from  visualization.

Of  course,   JMP  is  not  just  a  tool  for  visualization.

It  also  has  at  its  core  a  very  robust suite  of  statistical  analysis  platforms.

If  we  start  to  apply  those  to  the  data,

we  can  get   even  more  exciting   and  interesting  results.

I'll  just  jump  right  into   the  second  case  here.

In  this  case,

we're  looking  at  a  specific  tool, which  is  working  fine  most  of  the  time,

but  it  does  have  occasional problems  with  buildup,

sometimes  we  got  to  draw  our PM  in a  little  earlier  than  we  would  like.

We  want  to  take  a  look   at  our  health  parameters

and  see  if  there's  any  abnormalities, any  optimizations  we  can  make.

The  approach  that  I  use  here

is  applicable  for,  really,   any  industrial  application

that  has  defined  operating  modes.

Because  we  can  draw  those  modes   out  of  the  data  very  easily

using  clustering.

In  this  case,  our  abatement  has, or  this  specific  abatement,

has  three   pretty  well- defined  operating  modes

based  off  of  these  two  input  gasses.

I  use  K Means  clustering.

You  could  use  whichever   version  of  clustering  you  prefer.

But  I  run  that  over  the  data   to  sort a ll  of  our  rows,  all  of  our  points

into  these  three  operating  modes.

If  you  have   more  than  three  operating  modes,

obviously,  you  can  use  more  clusters.

But  it  also  gets  interesting,

what  if  you  don't  know how  many  modes  you  have?

Maybe  they're  customer-defined,

or  maybe  there's  a  suspicion  that,

"Hey,  could  there  be   some  interstitial  mode  here?"

Maybe  the  transition  state between  two  of  these  operating  modes.

If  you  want  to  investigate  that  way, you  can  use  iterative  clustering.

I  did  that  down  here.

You  just  run  from,  I  used  3- 10  clusters,

and  the  software  will  identify   what  the  optimal  number  of  clusters  is.

Looking  at  this,   it  is  correctly  identified.

It  gives  us   these  cubic  clustering  coefficients,

identifies  the  optimal  one,

that,  yes,  as  suspected,   three  is  the  optimal  number  of  clusters

to  sort  this  data  into.

I'm  not  really  worried   about  these  state  transitions.

I'm  really  more  focused on  the  states  themselves.

We  take  that  data,   we  get  a  readout  of  it,

and  we  throw  it  up  onto  this  3D  scatter  plot.

We  take  some  of  our   tool  health  parameters,

and  we  color  everything by  what  cluster  they're  in.

Immediately,   we  start  to  see  some  interesting  results.

We  talked  about  ionization  current   should  be  solid  at  25.5,

and  we  see   that  we  have  some  variability  here.

It's  dropping  below  that.

Immediately   we  know  that  we  have  a  problem.

But  what's  more  interesting is  that  every  single  one  of  those  points

is  grouped  into  a  single  cluster,

cluster  two,   which  corresponds  to  this

lowest  input  gas  one, highest  input  gas  two.

Now  from  an  engineering  perspective,

if  I'm  looking  to  make  optimizations   or  I'm  looking  to  improve  tool  health,

I  immediately  can  say,

"Hey,  this  is  the  operating  mode   that  we  need  to  look  at."

That's  what  I  need

in  order  to  start  looking   at  concrete  next  steps  for  improvement.

I'm  not  looking  at  the  tool  as  a  whole.

I've  already  managed  to  focus my  search  to  one  operating  mode.

The  last  thing  I  want  to  talk  about  then,

having  looked  at   two  of  these  use  cases  here  is,

what  are  the  other  advantages  with  JMP?

Why  JMP?

My  customers  are  collecting  all  this  data.

They  have  ways  to  view  it.

They  have  scatter  systems and  monitoring  systems  in  place.

They  have  ways  to  parse  it.

So  why  do  I,  as  a  supplier/ servicer,

need  this  platform   to  view  and  parse  the  data?

The  answer  for  me,  at  least  in  my  case, is  the  cross- platform  compatibility.

If  I'm  reliant  on  my  customer   to  chart  and  generate  data views  for  me,

I'm  now  taking  up  their  time   and  their  resources

to  troubleshoot  a  problem that  I'm  responsible  for  fixing.

With  JMP,   as  long  as  they  can  give  me  the  raw  data,

I  can  do  all  of  it  myself.

Not  only  is  that  freeing  up  their  sources,

it  gives  me  the  ability   to  do  my  own  investigation

independent  of  whatever  system   they're  using  for  data  analysis.

It  doesn't  matter  if  they're  using proprietary  monitoring  system  A  or  B  or  C,

or  if  they're  using   their  own  IoT  monitoring  system

from  their  control  engineers.

It  doesn't  even  matter

if  they  have  multiple  data  acquisition  systems

from  different  vendors.

With  JMP,

I  can  import  and  manipulate whatever  data  they  give  me

and  perform  these  kinds  of  analysis, sour ce-independent,

do  the  investigation  that  I  need  to  do for  my  customer  support

with  all  the  tools  for  visualization   and  statistical  analysis

that  JMP  provides.

With  that,  it  looks  like   we're  pretty  much  at  time  here.

I  know  this  isn't  the  traditional  use  case necessarily  for  JMP

from  some  of  the  folks  that  I've  talked  to,

but  I  hope  it  was  helpful  for  people.

I'd  just  like  to  thank  Adam  Stover,  our  CTO,

and  Gordon  Tendik, our  Director  of  Apps  and  Technology,

for  helping  me  put  all  this  together and  reviewing  the  work  that  I've  done.

Thank  you  for  your  time.