cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Choose Language Hide Translation Bar
Utilizing Several JMP Platforms To Conduct Measurement System Analysis in DMAIC Black Belt Project (2022-US-30MP-1106)

Wayne Chou, Customer Quality Engineer, Applied Materials Corp.
Kemp Wu, Global Installation Engineer, Applied Materials Corp.

 

The goal of this Six Sigma BB Project was to improve the Pin Gauge Measurement Capability of the diffuse hole size, which is critical to the Production Failure Analysis. Several JMP Analysis objectives are in the Measure Phase. First, compare Excel Xbar-R method vs. JMP ANOVA cross method. Second, choose GRR criteria between Precision to Tolerance (P/T) ratio and Precision to Total Variance (P/TV) ratio. Third, use SPC Control Chart to monitor the GRR stability, determine the process long term sigma for calculating the GRR P/V ratio, and identify the process rational subgrouping. Fourth, evaluate the Pin Gage wear risk to determine whether the Pin Gage measurement is destructive test and use the GRR Nested model. Finally, use GRR Misclassification to assess the risk of both the Alpha risk and Beta risk on the production yield/cost. JMP platforms have helped us execute this Six Sigma BB project effectively.

 

 

Hello,  everyone.

My  name  is  Kemp.

Come  from  Taiwan.

I  work  in  a Prime  Material for  global  continuing  improvement.

And  other  author  is  Wayne also  from  Taiwan.

He work in Prime Material  for  customer  quality  engineer.

Today  we  will  present  how  to  utilize SIPOC JMP platform

to  combat  measurement  system  errors

throughout your  purchase.

The  project  is  measurement  system errors between  supplier  A  and  supplier  B.

I  will  go  through  for  the  two

topic.

For  the  introduction and  supplier A  measurement  system.

Then Wayne  we  will  go  through the  next  two  topics.

For  the  introductions,

I  will  go  through  the  background, SIPOC  and in and out scope analysis,

correlations of the MSA CTQ.

Supplier  A  measurement  system,

we  will  cover  the  Excel Xbar-R vs  JMP ANOVA crossed method.

Gauge R&R

criteria on P/T and P/TV ratio,

variability chart and Gauge R&R mean plots,

Gauge R&R mis-verification.

Supplier  B  measurement  process,

we  will  cover  CE diagram,

Fit Y by X contingency platform.

One simple t and sample power t-test,

Gauge R&R.

The  final  conclusion  will  be  show

SPC  control  chart  for  Gauge R&R, and  a  summary  of  analysis.

The rest is the  takeaway learnings from the JMP.

First topic  we  will  go  through for  the  introductions.

The project was based  on the  problem  statement.

We  understand  the  VOC.

The  purpose  of  this  project  is

both supplier A and supplier B measured the same parts.

Supplier  B  has  got  a  much  worse  result

unexpectedly  than  results of  the  supplier A.

Customer  has  requested  to  find  out  the  gap

and validate the measurement system of supplier A and B.

Then  we  go  to for  the  SIPOC to  understand  our  CTQ.

They  are  three CTQ,  we  find  out.

C T Q1,

standardize supplier  B  measurements,

which  we  need  to meet for  at  the  certain criteria,

resolution  need  to  be  less  than  10 %.

C T Q2,  verify  the gaps between supplier A and Supplier B.

So  we  need  to  meet...  The  bias need to be zero.

CTQ3, supplier B Gauge R&R

which  we  need  to  meet the criteria for the CTQ ratio  less  than  30 %.

This  is  the  SIPOC  structure.

We  start  with  the  customer voice

and  back to  the  output  CTQ, which  we'll  find  out.

A nd back  to  the  process  items,

all  process they're bound the  measurement  system.

With  these  four  sequences,  states  for calibration  to  operation.

And  the   pin gauge calibrations.

Then  sample  for  the  diffuser, hole  measurement.

Finally, debate hypothesis through the same way like PQP Excel file.

As  you  can  see,

this  is  all  about  the MSA.

On  the  following  slide, we  will  go  into  picture

of  the  relation  about  the  SIPOC and  the  VOP  and  the  customer VOC.

There are  two  measurement  output for  the  supplier  A  and  the  supplier  B.

In  our  goal s  need  to  measure our  measurement  system,

supplier A and supplier B need  to  be  the  same.

On  the  measurement  process  variation, there  are  two  parts.

One  is  the  accuracy, the  other  one,  the  position.

For  the  accuracy,  is  due  for  the  bias

linearity.

And  the solution  for  that,

stability  is  not  in  our  scope.

For  these  three  is  indicate for  our  CTQ1  and  the  CTQ2.

For  the  CTQ3  is ou tput for the

precision  problem  for  the repeatabilty and reproducibility's.

We  will  go  through  the  second  topic, supplier  A  measurement  system.

In our  Gauge R& R errors,

we  use  the  continued  data,

crossed  way

and  don't  form

for  two  best.

What  is  the Xbar-R  method?

And  otherwise,  ANOVA method?

In Xbar-R method is for the PQP Excel file.

They  have  two  disadvantage,

the  first one,  it  could  not  detect parts- to- operator  interaction.

Second,

it  is  made  with  the  Gauge R&R, with  the  normal  distribution.

So  you  will  be  impact  by  any  outlier.

Also,  is  not  good  for  the  sample  data is  more  than  five  data  points.

In  ANOVA method,

it  not  only  can  detect parts-to-operator  interaction,

but  also  use  standard  deviation directly .

So  it  don't need  to  be  considered for  the  normal  distributions.

In our  project the interaction  is  high

so w e  must  need  to  be  use  the  ANOVA   method for  our  Gauge R&R  analysis.

First,  we  chose the  low  data  funds  for  a  PQP  file.

They  use  the  10  data  points

for

the  study.

Actually, it  is  not  good  for  more than  five  data  point,

X-bar  analysis, as I  mentioned  for  this  slide.

Anyway,

we  still  use  the  same  data into  JMP ANOVA  as  well .

The first somewhere PQP is no file

is  only  just  useless  file errors.

Y ou  tell  us   there  are  two  ratio  for  Gauge R&R,

P/TV  is  24 %,

is  measured  [inaudible 00:06:52].

P/T  is  9 %,  which  is  pretty  good.

What  is  the  difference between  P/TV  and P/T ?

W e  should  know  there  are  three  variations.

One,   equipment  variations, which  is called   repeatability.

Another  is  the  operator  variation, which is  called  the  reproducibility.

The  last  one  is  the  part  variations,

which  depend  on  simple  sessions.

Now,

P/ TV  definition  is

P  is  the  process

equal to EV

plus AV.

And TV is total variance equal to EV plus AV plus PV.

There  will  be  a  risk  when  gage  sample range  will highly  impact by

P/TV  ratio  result.

In  P/T  definitions,

P  is  tolerance  is  Parts Spec. R ange.

When  spec  is  well  defined, P/T  ratio  is  our  prefered  to  MSA

for  doing Gauge R&R success  criteria.

For  the  second  [inaudible 00:08:13]

I'm  sorry.

For  the  second  [inaudible 00:08:17] JMP has  no Xbar-R  errors,

only ANOVA.

There  are  two  model.

One  is  the  main effect  model, and  other  one  is  crossed  model.

Main  effect model has  no  parts-to-operator component.

Will  be  most  assigned  to  repeatability and is  caused  by  machine  issues.

On  the  other  hand,

crossed  model  can correctly  derive

the   parts-to-operator interaction  component,

which  will  tell  us  there  is  the  issue happen  on  the  Gauge R&R,

on  the  process  issues.

We  prefer  to choose  the crossed  model rather  than main effect model.

On  the  Gauge R&R variability chart,

on the left side of the graph

measurement mean.

Here  we  need  to  be see  is  there  50 %,

of  point,  is  outside  of  the  control maybe.

It indicate  the  case  is  capable

to detect  the   [inaudible 00:09:32] .

Our  case  is  a  100 % outside  of  the  control,  which  is  good.

In  the  standard  deviation  chart,

on  the  operator  B, on  the  parts A  has  repeatability  issues.

There  are  25 %  of  the  data is  on  the zero ,

which  indicate  measurement  result is  not attainable.

On the Gauge R&R, mean plot for  the  measurement  operator.

We  can  see  for  the operator  C, is

higher  than  operator A   and  B

on  measurement by parts.

You can see the data   is  up  and  down,

it indicate large  different  between  parts.

Also,  the  sample  range  is  1.2 equal  to  20% of the tolerance range ,

which  is  too  small,

resulting in higher  P/T  ratio.

The  last  one  is  the parts- to- operator  interactions.

On  the  parts  7 to A,

there  is  the  crossed  line between  part operator  B

with  the  operator A  and  C.

It indicate interaction between  appraiser  and  the  part.

We  finally  going  to  the  last  part of  the  Gauge R&R.

The  type one  and   type two  error.

The  type one error

is  often rejected  alpha  risk.

Maybe in  manufacturer  side parts   [inaudible 00:11:04]   is  good

but we reject.

And otherwise,

type two error

is  often accepted,   beta  risk,

which  means  is  customer  side  part   [inaudible 00:11:16]   is  bad.

But  we  said,

and  this  side,

we  can  see  there is nothing.

We  can  see

that alpha  is  zero  and  the  beta  is  39 %.

If  you  are  still not clear ,

we  can  show  you  the  example.

In  manufacturer  side,  produces  300  parts.

There  are  200  parts,  is  good  parts

and  the  100  parts,  is  bad  parts.

If  the  beta risk  is  39 %,

which  we'll  deliver

39 bad parts to the  customer  site.

We  conclude  39 %  of  the parts,

will  be  delivered  to  the  customer,

which  is  not  acceptable.

We  need  to  consider  for  the spec limit

for  the  adjust  our  offer and  the  beta  risk.

In  the  data

Gauge R&R  samples  are  all  good,  100 %.

And  only  beta

risk have been observed.

Here  are  the  Gauge R&R  summary.

We  recommend P/T ratio  instead of  the  P/TV  ratio.

We  recommend  use  the JMP  crossed method

for allocate your Gauge R&R errors.

Even P/T is best,

we  still  have  to  watch the  operator-to- parts  interaction

the  misclassification

for  our  parts  quality  efforts.

Okay,  I  finished  my  part.

So  the  next  two  parts

will  be  show  by  Wayne.

Wayne is  your  turn.

Hello.

This  is  Wayne  speaking.

Let  me  uncover  the  last  two session

for  the  supplier  B  measurement  process.

This  is

C&E  diagram.

Fish bone,  to  identify  potential  cost

across  standard

procedure  and  the  standard

supplier B

and  supplier  A.

After  last  discussion with  engineering,

we  conclude  five  potential

good cause

to  standardize  and  validate

the  first item  is  pin

measurement  sequence.

Supplier  B  adapted  from larger  pin to  smaller  pin  by  standard  procedure.

[inaudible 00:13:59]  both  way,

supplier  A  adopt  smaller to  larger  diversity.

The  second  item  is  precheck  by  calibration.

Supplier  B

didn't  do  the  action

by  a standard  procedure and  supplier A  did.

The  third

action  is  a   pin gauge resolution.

Supplier  B  used  the  larger pin gauge  increment,

50 %  in  resolution,

while  standard  and  supplier  A take  10 %  in  resolution.

The  fourth item is   whether   to  check  the  pin

before  entering  the  diffuser  hole  or  not.

The  last  item  about  the  pin  holder  weight.

Supplier  B  adopted behaviour, than  standard  procedure

and  supplier  A.

Now  we  will

do  one  by  one,

the  hypothesis  test and

valid  data  with  high  score  contingency.

The  first hypothesis we  have  to  do  is  verify

if  sequence  one  is  different from  sequence  two  or  not.

Sequence  one   pin  go from  smaller  size  to  larger  size.

Sequence  two  is  just  on  the  contrary, reverse  pin.

Here  is  the  major  result for  the  sequence  one  and  sequence  two.

Let's  do  the chi-squared test  to  see

the difference  between [inaudible 00:15:25]  or  not .

In contingency table, the results  shows   p-value  less  than  5 %.

So  we  rejected  a  null  hypothesis,

which  means  sequence  one  is  rather different  from  sequence  two.

Therefore  we  must  watch  out this  key  factor  on  pin gauge  measurement.

The  second  hypothesis

is  the  way  that you  do  precheck pin  size  by  calibration  tool.

Learn your  calibre  before  the  measurement.

Here  is  the  diffuser,  whole  size  data.

The  assumption  is  that  we mistake  90 for 90.6  without  precheck.

There  will  be  11 zones

become  no- go.

Based  on  contingency table.

In   chi-squared test, we reject  null  hypothesis.

This  means  calibration  before measurement  is  significant,

important.

The  third hypothesis  test  is  to  compare all  the  measurement  tool,

20 %  resolution

with  new  two  or  10 % resolution  on  the  measurement  variation.

By  using

the  similar  concept,

we  can  know  why  we  used the  higher  resolution

on  the  measurement.

The same on the item  four,  shaking  the  pin before  entering  the  hole.

We  use  the  specific  48  holes

with  and  without  shaking to  see  the go/no-go effect.

The results shows null  hypothesis  is  rejected.

That  means  shaking  pin  is  important on measurement.

However,

regarding the item five pin vise

all  this  weight...

Chi-square p-value  more  than  5 %,

which  means  we  cannot  reject the null  hypothesis.

That  tell  us there's  no  difference on  the  measurement  between  the  unit

and  five  times  unit  in  weight.

Because  we  have  varied data all  of  five  key  measurement  items  above.

FMEA  can  further  estimated RPN

before  and  after  the  improvement of  our  recommend  action.

Based  on  severity,  probability and  detectivity.

For   [inaudible 00:17:55]

pin gauge  measurement  sequence, severity  is  high  because  the  wrong  go.

Past  probability  is  also  high because  dis location  to  hole  center,

W use  the  sequence  one  because the high  detec tivity.

After  we  change  to  sequence  two,

the  probability  and  detectivity  will  drop to  the  half,  so  RPN  reduced  to  54

As y ou  can  see

all  the  score  are under  100 meeting  our  forecast.

Okay,

let's  move  on  the  CT Q2   about bias  between  supplier  B  and  supplier  A.

From  the  FMEA,  we  are  confident

of the  diffuser pin hole  size  is  around  90  to  90.6.

However,  supplier  A, FA  report  shows all  the  pin hole  points  96.

We  take  distribution  mean  test,

the  p-value  suggest the  gap  between  supplier  B and  supplier  A

actual standardized  is really  something  different.

Therefore  we  have last  communication with  the  supplier  A.

We  conclude  the  two  potential  cause.

One  potential  cause  might  be  some  hole point  93  some  are  90.6.

In  current symbolic method

parts

straight  over into  24 wrong.

Sample  one

randomly  in  24  wrong.

Is  it  enough  to  find  out  a  larger  size?

So  we  confirm  with  the  sample size  and  power  test.

The  other  possible  cause  could  be the  hole enlarged  during  the  measurement.

W e  validated  by  repeating the   pin gauge  measurement.

All right, let's  see  the  result .

Here you the sample  size and   power  test  result.

In exact  test  binominal,

power  is  equal  to  99.7,

that's  more  than  90 %.

In  normal  approximation,  power  is

97.6.

That's  more  than  90 %  as  well.

In  other  word  for  power,  more  than  90 % will  just  require  18  points  to  major.

Therefore,  current  stratified

random sampling is good detectivity.

It  is  a  fat  chance  that  we   cannot   catch  96  in  diameter

and current 24 straight by wrong.

In  parts  do  have  larger  hole  size.

Now,   after the gap on  was  found

we  further  check  if  our  CTQ3 Guage R&R  is qualified or not.

F rom  left  table,  you  can  see  the  hole diameter  was  increased  by  4 only

compared  to  tolerance.

The  resolution  is  less  than  10 %.

We can  assume  nondestructive crossed method ,

to  qualify this  measurement  capability.

Now,

although the

operator- to- parts  interaction accounts  for  13.6%.

P/T  ratio  is  still  18 %,

which  would  meet Gauge R&R  criteria,  less than 30%

Later we  going to  address  more

about  interaction  here   regarding  the  P/TV  ratio.

Sigma  and  variance also  are  high and  cannot

be...

Quantified  because  the  same hole  size  selection

is  not  wide  enough.

Layers  for  the  reference  only.

Okay,

for  our  conclusion

and  about  the  SPC  control  chart  to  monitor the  Gauge R&R  stability.

We  use  the  Levey Jenning  chart

to  get  the  process  long-term  sigma for Gauge R&R P/V ratio calculation.

Phase before  in  supplier  B,

with  measurement  resolution   50 %  shows  larger  sigma

and  wider  control  limit  according.

After,  in  supplier  B,

with  measurement  resolution  10 %,  shows smaller  sigma  and  narrow  control  limit.

It got  improved on the  measurement  precision

for  a  common  cause.

Here  is  the  summary  for  a  CT Q1

standardized  supplier  B  measurement with  the  resolution  less  than  10 %.

Only pin  holder  weight  is  not  significant

the  other  four measurement  item  are  all  significant.

For  CTQ2 sample  size  is  good

and  the  hole  enlargement  issue during  measurement  was  found.

For  the  CTQ3 supplier  B

provide  its  qualified   measurement  capability

Gauge R&R  less  than  30 %.

Where  the  repeatability  less  than  10 %,  and

re producibility  less  than  20 %.

For  take away  learning, we  use  the  last  JMP  tool.

Like  C&E  diagram, Fit Y  by  X  contingency  table,

sample  power  test, distribution  mean  test

ANOVA crossed Gauge R&R to  standardize  our  pin gauge  measurement.

That's  all  about  the  JMP  practicing.

Thank  you  for  listening.