cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Choose Language Hide Translation Bar
How to use JMP in pharma process validation and continuous process verification (2022-US-45MP-1130)

Per Vase, Managing Consultant, NNE
Louis Meyer, IT Consultant, NNE

 

In the pharmaceutical industry, the three PQ batch concept is being replaced by continued process verification. However, there is still a validation event (stage 2) prior to going into commercial manufacturing (stage 3). In stage 2 you are supposed to prove future batches will be good and in stage 3 to prove that the validated state is maintained.

 

JMP has the ideal toolbox for both stages. If the process can be described with a model, prediction intervals with batch as a random factor can be used to predict the performance of future batches. From version 16, prediction intervals also work with random factors. To live up to the assumptions behind the model, JMP has an excellent toolbox to do the sanity check. The prediction limits obtained in stage 2 can be used as the first set of control limits to be used in stage 3.

 

A JMP script that combines the necessary tools described above to calculate control limits, prediction limits and process capability in stages 2 and 3 will be demonstrated. The script has been heavily used by many customers. It only requires that data can be described with a model in JMP.

 

 

My  name  is  Per Vase  from  NNE,  and  I  will together  with  my  colleague  Louie  Meyer

represent  how  you  can  use  JMP in  pharma  process  validation,

and  actually  leading  into  that  you  can  do

continuous  process verification  afterwards.

We  both  come  from  a  company  called  NNE, and  we  do  consultancy

for  the  pharmaceutical  industry and  we  work  with  data  science.

So  we  actually  trying  to  create value  from  data  at  our  customers.

Of  course,  we  are  extremely happy  that  we  can  use JMP  for  that

and  this  is  what  we  are going  to  demonstrate  today.

So  the  background  for  the  presentation is  process  validation.

This  is  a  very  important  issue in  the  pharmaceutical  industry,

that  before  you  launch  a  new  product,

you  have  to  prove that  you  are  capable  of  producing  it.

Classically  this  has  been  done by  just  making  three  batches.

If  these  three  batches  were  okay, we  have  proved  that  we  can  manufacture

consistently  and  then  you're ready  to  launch  products.

But  of  course  everyone,

including  the   [inaudible 00:01:06] have  found  out,

that  you  could  make three  batches  is  not  the  same,

as  all  future batches  are  going  to  be  good.

What  is  expected  today  from  a  validation is  that  not  only  show  that  you  can  make

three  or  could  make  three  batches,

you're suppossed to  make  a  set  of  batches.

Based  on  this  set  of  batches, you  should  be  able  to  prove

with  confidence  that  all future  batches  will  be  good.

So  instead  of  predicting  the  past, we  now  have  to  predict  the  future.

This  really  something  that  is a  challenging  thing  in  the  pharma  industry

because  they  have  been  used  for  many years  just  to  make  these  three  batches.

So  how  to  do  it  now?

We  are  really  helping many  customers  with  this,

and  what  we  strongly  recommend is  simply  predict  the  future.

How  can  you  predict  the  future?

Well,  you  can  do  that  in  JMP with  prediction  intervals.

That's  what  they  are  for.

So  you  collect  some  data, on  the  days  you  analyze,

you  can  predict  how the  rest  would  look  like.

If  you  can  just  build  a  model  that  can describe  your  validation  data  set,

and  if  you  put  your  batchess in  this  model  as  a  random  factor,

these  prediction  limits  actually  cover not  only  the  batches  you  make,

but  also  the  batches you  haven't  made  yet,

and  thereby you  can  predict  the  future.

What  you're  seeing  in  the  bottom of  the  graph  you  have  stage  one.

This  is  where  you  designed  the  new process  for  making  the  new  product.

Stage 2  is  exam  that's the  classical  old  fashioned  validation.

Where we  previously  made  three  batches, now  we  are  making  a  set  of  batches.

Now  based  on  that  we will  predict the  future  batches  will  be  good.

If  you  have  a  lot  of  batch to  batch  variation,

it  can  be  hard  to  predict with  just  a  few  batches,

due  to  the  width  of  the T  distribution which  view  the  use  of  freedom,

so  it  might  take  more  than  three.

But  we  strongly  recommend  still  to  make trees  stage  2  because  otherwise,

patients  have  to  wait  too  long  for  the  new product  and  then  if  it's  not  enough.

You  can  make  the  waste in  what  we  call  stage   3a.

Certain  parties that treat  hopefully on  how  your  prediction  limits

will  be  inside  specification  limits and  then  you  have  proven

that  all  future  paths  will  be  good, and  you  can  go  into  what  we  call  stage   3b,

meaning  that  now  you  don't  have  to  measure in  product  testing  any  longer.

You  could  maybe  measure  on  the  process instead  of  measuring  on  the  product

because  you  have  proved  all future  medicine  will  be  good.

You  only  have  to  prove  that  you  can maintain  the  validated  state.

That  can  give  you  a  heavy  reduction in  your  future  costs.

Some  customers,  they  get  you  up  to  70% reductions,  in  the  future  costs,

after  they  have  proved  that  all  future batches  are  going  to  be  good.

Today  we  will  try  to  demonstrate, how  this  can  easily  be  done  in  JMP.

So  what  is  the  validation  all  about?

Well,  it's  the  prediction of  future  batches.

Now, previously  we  just  made  three  batches,

but  now  we  have to  predict  the  future  batches.

How  can  you  predict  that  with  confidence?

Because  when  you  do  validation  you  have to  prove  confidence,  things  are  fine.

Well, you  can  just  use  prediction  intervals.

They're  also  called  individual  confidence intervals  and  JMP  for  the  same  reason.

Or  you  can  also  go  for  tolerances, if  you  want.

How  many  batches  in  stage  2?

We  actually  recommend to  go  on  with  what they  used  to,  which  is  three.

But  you  can  only  pass  with  the  three batches  if  you  control  limits.

Control  limits  are  actually  just predicting  limits  without  confidence.

I  will  show  you  how  to  calculate  them, and if  they  are  inside.

Actually  the  best  guess  it's  fine.

If  your  predictions  are  outside, you  might  need  more  batches.

But  you  can  make  these  after  have  gone to  the  market  with  your  product.

How  many  batches   should they  make   in 3a?

Very  simple.

Until  your  prediction limits  are  inside  specification  intervals.

Or  if  you  want, the  corresponding  PPK  is  high  enough.

I  will  show  how  you  can  convert these  limits  to  a  PPK.

When  it's  passed  you  can  actually  go to  stage   3b  because  now  we  have  proved

all  the  future  batches  will  be  good.

You  just  have  to  prove that  you  can  maintain  the  validated  state.

Typically  that  can  be  done by  measuring  in  the  process,

which  is  easier  in  real- time, compared  to  doing  in  product  testing.

So  that's  actually  a  huge  benefit.

A  lot  of  people  harvest  if you're  doing  it  this  way.

That's  a  small  flow chart  for  how  does  it  work.

So  you  start  out  looking at  your  validation  once,

you  calculate  your  prediction  limits,

just  be  aware  that until  version  15  they  were  not  right.

They  agreed  to  freedom  two low  prediction  limits.

It  was  settled  in  version  16, so  please  JMP  use  version  16  for  this.

Then  if  these  prediction limits  are  inside  spec  limit,

you have passed both stage  2  and   3a,

and  you're  waiting for  continuous process  verification,

measuring  on  the  process instead  of  measuring  on  the  product.

If  it  turns  out that  the  prediction  limits  are  too  wide,

then  look  at  your  control  limits.

If  they  are  within  spec  limits, and  predicted  limits  outside,

the  most  common  typical  course is to  just  collect  data,

you  just  collect  more  data.

But  you  do  that  instead   3a after  going  on  to  the  market.

So  just  recalculate  this  prediction  limit, every  time  you  have  a  new  batch,

and  then  hopefully after  maybe  three  or  four  extra  batches,

they  are  inside  your  spec  limit and  then  you're  ready  to  go.

If  it  happens  that  also  your  control limits  are  outside  specification,

then  actually  you're  not  ready for  validation  because  then  actually

best  guess  is that  the  process  is  not  capable,

and  of  course  you  have  failed  your validation  and  you  need  to  improve

the  process  and  we  do  everything  again.

Hopefully  we  don't  end  there.

But  of  course  it  can  happen.

Just  short  about  this  particular  methods

we  have  used to  calculate  these  control  limits,

prediction  limits  and  tolerance  limits.

For  control  limits,

you need the JMP of  course,  you  can  get  control  limits.

But  it's  actually  just  for  one  known mean  and  one  known  standard  reason.

Often  you  have  more  complex systems  that  you  might  have  many  means,

different  cavities and  decent  moving  process  for  example,

you  might  have  several  bands components  between  sampling  points.

Typically  you  have  more  than  one mean  and  one  standard  reason.

But  then  you  can  just  build  a  model, and  describe  your  data  set  with  the  model.

Then  you  can  just  take the  prediction  formula,

you  can  send  the  standard  error or prediction  formula

and  you  can  take your standard  error  on  residuals,

and  then  instead  of  multiplying with  the  G  quantile,

just  use  the  normal  quantile.

Then  it  corresponds to   having back  confidence.

This  is  how  we  calculate control  limits  based  on  a  model.

Simply  based  on  the  prediction  formula and  the  standard  of  the  prediction,

the  standard of residuals which  we  can  all  get  from  JMP,

then  it's  pretty  easy  to calculate  how  does  control  limits  work.

It's  even  easier  to  predict  the  limits, because  they  are  ready  to  go  and  JMP.

They're  already   there,

and  of  course  they  would  just use  the  limits  calculated  by  JMP.

I  said  before  be  careful  with  JMP.

Before  version  16, limits  simply  gets  too  wide.

So  please  use  version 16  and   newer  for  this.

For  tolerance  limits,

we  have  a  little  bit  of  the  same  issue as  with  the  control  limits.

You  have  tolerance  limits  in  JMP, but  only  for  one  mean,

and   one standard deviation.

We  don't  have  it  for  a  model.

But  it's  actually  pretty  easy  to  convert the  classical  formula,

for  a  tolerance  interval into  taking  a  model.

Just  replace  the  mean with  the  prediction  formula.

Just  replace  N  minus  one  with  the  degrees of  region  for  the  total  variation,

which  we  actually  calculate from  the  width  of  the  prediction  interval.

Then  you  can  just  enter  this in  the  classical  formula  and  suddenly,

we  actually  also  have  a  tolerance interval  and  JMP,

that  can  happen  within and  between  batch  variation.

Then  we  ready  to  go with  the  mathematics  here.

Some  customers  prefer  not  just  to  look at  if  limits  are  inside  specification,

they  need  to  be  deep  inside  specification,

actually  corresponding to  that  PPK  is  bigger  than  one.

But  it's  very  easy  to  take  the  limits and  the  prediction  formula,

and  convert  them  into  a  PPK  by  this classical  formula  for  PPK.

If  you  predict  the  limits, you  get  it  with  confidence,

because  the  average  confidence the  same  retirement  limit,

and  if  you  put  it  in  the  control  limit, you  just  get  PPK  without  confidence.

We'll do  without  confidence and  with  confidence.

Without  confidence  is  the  one  we supposed  to  recommend  to  use  in  stage  2,

and  the  other  ones are  clearly  for  stage  3a,

where  we  have  to  prove  it with  confidence.

So  life  is  easy  when  you  have  JMP,

and  if  you  have  a  model  that  can describe  your  validation  dataset.

But  we  have  to  be  aware that  behind  all  models,

there  are  some  assumptions that  need  to  be  fulfilled,

at  least  to  be  justified  before you  can  rely  on  your  model.

You  need  to  do  a  standard  check of  your  data,

before  you  can use  the  model  to  calculate  limits.

A s  you  know, JMP  has  very  good  possibilities  for  this,

and  I  will  just  now  go  into  JMP, and  see  how  this  works.

Here  is  a  very  well-known  data  set in  the  pharma  industry,

published  by  Industrial  Society of  Pharmaceutical  Engineering,

where  they  put  out  a  data  set from  the  real  world  and  say,

"This  is  a  typical  validation  set, please  try  to  calculate  on  this  and  see

how  would  you  evaluate  this  as a  process  validation  data  set."

If  you  start  looking  at  the  data  chart, you  can  see  here  we  have  three  batches.

The  classical  three  batches, oldfashioned  ways,

and  we  are  making  tablets  here and  we  are  blending  the  powder.

When  we  are  blending  the  powder, we  take  out  samples  in  15  different

systematic  positions  in  the blender  in  all  three   batches.

When  we  take  samples, we  take  more  than  one.

We  actually  take  four.

So  we  have  three  batches,  15  indications, and  every  time  we  take  four.

This  is  a  data  set  from  real  life that  was  used  for  validation.

If  you  look  at  data,

it's  actually  fairly  easy  to  see that  for  batch  B  within  a  location,

the   inter batch's  location  evaluation  is much  bigger  than  for  batches  A  and  C,

and  if  you  put  a  control  limit on  your  standard  deviation,

that's  clearly  C  is  higher.

You  can  also  do heterogeneity of  variance  test.

It  will  also  be  fairly  obvious  that  B  has significant  bigger  variance  than  A  and  C.

So  we  cannot  just  pull  this  because  you're only  supposed  to  pull  variances,

that  can  be  assumed  the  same.

So  what  to  do  here?

Well,  the  great  thing  about  JMP,

you  can  just  do  a  balance  model, so  you  can  go  in  and  put  in  the  batches

as  a  balance  factor  on  top  of  having factors  to  predict  the  mean.

A gain  you  can  clearly  see  that  patch  B,

has  bigger  variance  than  A  and  B and  we  need  to  correct  for  that.

So  how  do  you  correct  for  that  in  a  model?

Because  I  would  like  now to  put  in  random  factors

but  not   where its  modelled  in  JMP do  not  support  random  factors.

What  I  do  instead,  I  just  go  up  here and  I  save  my  variance  formula.

So  actually  I  get  a  column  here, where  I  have  my  data  variances.

Then  I  can  just  do  weighted  questions with  inverse  variance.

Classical  way  of  weighing when  you're  doing  linear  regression.

So  it's  very  easy  to  correct for  that  patch  B  has  higher  variance

than  A  and  C, just  by  doing  weighted  regression

Being  aware  of  that,  then  I  can  start looking  do  I  need  to  transform  a  data?

You  know  you  have  back drops  and  information  and  JMP.

So  it's  very  easy,

just  make  an  ID  that  describes the  combination  of  batches  and  location.

Then  you  can  look  at  the  procedure variation  within  each  group,

and  pull  this  across, and  you  will  get  a  model  like  this.

You  can  see  I  weighted  it because  I  had  to  weight  it.

To  correct   for batch  B  as I  have   in  A  and  C.

You  can  then  see  you  have  no  outliers and you can also  box -cox.

There's  no  need  for  transformation.

So  that's  also  easily justified  working  this  way.

Then  I'm  ready  to  make  my  model.

But  when  I  make  my  model, I  will  put  in  my  batch  as  a  random  factor.

I  might  also  put  in  location  times  batch as  a  random  factor,

because  it  should  be  random  because I  would  like  to  predict  future  batches.

Then  there's  actually  another  assumption,

because  when  you  put  in  random factors  you  are  assuming  the  influence

at  least  on  average  zero and  it's  normally  distributed.

How  to  verify  this  or  justify  this?

Well  just  go  and  look  at  BLUPs, that's  just  a  random  factor.

You  can  just  make  them  into  a  data  table, and  you  can  do  a  BLUP  test  on  them.

That's  what  I  have  here.

Here  you  can  see  I  have  saved  my batches' BLUPs  and  my  interaction  BLUPs,

and  I  just  re -modelled  them  to these.

I  can  see  these  batch  effects can  easily  be  assumed  normally  distributed

and  actually  the  same with  the  interaction  effects.

Now  in  a  very  short  time, all  the  sensitive  check  you  need,

to  be  able  to  justify  that  you are  ready  for  analysis.

So  now  I  have  my  model, which  I'm  ready  to  go  for,

where  I  have  put in  my  locations  in  the  random factors,

and  my  pass  as my  other factors.

Now  I  will  give  my  work  to  Louie,

who  will now show   how  to  go on  with  the  script  on  this  data  file.

As  Per's  already  shown,

JMP  already  offers  a  lot  of  opportunities to  deal  with  many  of  the  problems

you're  facing  and  validating, for  example,  TPQ  batches.

Some  of  the  things he  has  shown  here  is  that,

in  fact  most  processes cannot  be  described  by  just  one

mean  and  one  standard  deviation.

For  this  we  really  like  the  state model  platform,

which  allows  us  to  do  exactly  this by  including  system  manufacturers  for  many

means  and  or  random  factors for  many  variances.

Then  often  we  see  the  data requires  transformation.

Here  we  already  the  fit  model  platform  has the  box- cox  transformation  allowing  this.

Furthermore,  data  sets  almost  always contain  some  kind  of  outliers.

For  this  we  are  already in  the  midmarket  platform,

also  have  the  student  type  residual  plus,

which  is  a  great  way of  dealing  with outliers.

Then  in  cases  where  we  see  a  lack of  variance  from  beginners,

JMP  has  also  the  log  variance  modelling, which  we  use  to  find  the  variance,

and  convert  it  into  a  weight in  a  recursion  model.

Then  out- of- the- box  JMP  of  course also  have  the  prediction  intervals,

individual  confidence intervals  directly  from  the  Fit  model.

There  are  also  some  of  the  problems we  faced  where  JMP  didn't  take  us  all

the  way  but  did  the  groundwork  here.

I  think  this  is  what  we're  actually  trying

to  address  with  our  script  as  well, making  it  much  easier,

and  I  think  one  of  the  primary  reasons  we

have  developed  this  script  is  that  usually the  customers  we  see  that  these

calculations  and  visualizations  we're doing  often  are  done  by  human  employees.

So  whenever  humans  are  involved,

there  is  a  high  risk of  human  errors  as  well.

This  is  what  we  are  trying  to  battle by  automating  all  of  these  steps  later

on  coming  from  the  analysis and  also  the  visualizations.

Then  of  course, here  is  the  control  intervals  in  JMP,

where  JMP  can  only  handle one  mean  and  one  variance  component.

This  will  also  solve  in  the  script

from  the  fit  and  model  platform  using the  prediction  folder  instead  of  the  mean.

Then  we  use  the  total  variance

from  the  model  calculated from  the  standard  error  and  the  prediction

formula  and  the  standard error  on  the  residuals.

Then  we  also  often  face  customers who  prefer  tolerance  interval  issues,

and  this  is  due  to  their  separate settings  of  both  confidence  and  courage.

However  briefly  described,

JMP  can  only  handle  one  mean  and  one variance  component  tolerance  intervals.

So  in  the  script  we  also  calculate

tolerance  intervals  from  the  Fit  model platform  using  the  same  number

of  effective  degrees  of  freedom as  used  in  our  prediction  itself.

And  then  lastly,

the  script  has  also  included the  calculation  of  capability  values,

more  specifically  the  PDK  values, as  many  customers  also  require  these.

Here  we  calculate  them  both

with  confidence  using  the  prediction limits  as  an  input  to  the  calculation.

Then  we  also  calculated  our  confidence using  the  controller  input  calculations.

So  just  to  go  to  the  script.

Our  script  here,

as  we  have  developed  package  most  of  these subsequent  steps,  after  doing  the  sentence

check  into  a  single  package, the  script  itself  takes  three  inputs.

We  have  the  original  data  file,

and  then  we  have  the  model  window and  then  we  have  a  template  document.

So  what  our  script  does  is  that  it actually  feeds  information  from  the  data

file  and  the  modern  window, into  the  template  documents.

From  the  data  file  we  take  the  metadata and  data  itself,  and  from  the  model  window

we  take  model  parameters  and  model results  and  fields  as  well.

This  is  also  why  it's  important to  stress  here  that  the  model

that  are  used  here  as an  input  should  be  a  complete  done  model.

This  means  that  you  have  done  already

all  the  sanity  checks  SPI just  introduced  us  to.

Also  you  have  done  your  model  deduction and  the  sanity  check  includes  something

like  outlier  exclusion  and  data transformations  as  well.

One  could  argue  that  we  could  do  this in  the  script  as  well,

obeying some  hardcore  statistical  rules.

But  we  also  think  that  this is  a  very  useful  experience.

Working  with  the  model  here.

You  get  a  much  better  insight into  the  data,

and  you  also  have  to  apply  some   process knowledge  here  to  get  a  better  model.

So  the  template  document  in  itself,

we  actually  use  this  inspired by  the  app  functionality  and  JMP.

We  really  like  some  script  where  the  users

or  each users  can  actually interact  with  the  script  itself.

So  the  template  document  is  essentially

a  data  table  in  JMP where  we  have  no  data  in  it.

However,  we  have  defined  a  lot  of  columns

with  predefined  formulas referencing  each  other.

This  allows  the  user  to  actually  go  in,

and  backtrack  all  our  calculations through  the  columns  in  this  template  file,

leveraging  the  for  example, formula  editor  and  JMP,

and  potentially  add  new  columns  if they  want  to  see  new  calculations.

Or  they  can  edit  some  of  the  calculations we  are  doing  in  there  as  well.

Furthermore,  all  visualizations descriptors  providing  the  user

are  also  actually  stored  as a  table  script  in  the  template  document.

So  users  can  just  go  in  here  and  edit, for  example,  the  layout  of  specific  graphs

if  they  want  new  colors or  something  like  this.

I  think  we  should  take  a  look at  how  it  actually  looks  in  reality.

We  will  jump  into  JMP  here and  I  will  just  find  the  same  model

as  Per  just  finished  for  us.

We  are  again  looking at  the  ISPE  case  as  Pierre  showed,

and  I  will  just  find the  same  model  he  ended  up  with  here.

Now  that  we  have  our  model,  we  have  done the  sanity  check  and  everything,

we  have  our  original  data  file  behind, we  simply  run  the  scripts.

And  we  will  need to  send  it  to  three  things  here.

First  of  all,  we  have  template  files now  filled  with  all  the  data  we  need.

We  see  the  two  graphs we're  showing  right  here.

Then  we  have  the  PPK  batch  giving  us a  PPK  for  each  location  in  the  blender.

We  have  a  total  of  15  up  here,

and  we  have  the  normal  PPK  based on  control  limits  in  blue,

based  on  prediction  limits  in  red and  based  on  tolerance  limits  in  green.

Lastly  we  had  the  graph  here.

This  graph  shows  us  partly  our  data,

along  with  all  the  limits  we have  calculated  in  the  script.

Yes,  and  what  we  see  here  is  in  fact that  batch  A  and  batch  C

are  performing  well  for  all  locations.

Meaning  it  has  its  prediction  limits, and  tolerance  limits,  and  control  limits

for  that  matter  inside the  specification  for  all  locations.

However,

if  we  look  at  batch  B,

where  they  also  found the  variance  to  be  much  larger  than

the  two  other  batches, we  see  that  this  is  in  fact  going  outside

specifications  on  all  locations  when  we look  at  the  prediction  limits,

not  necessarily  both  specifications, but  either  under  lower  and  upper.

So  we  see  many  customers  here  actually just  computing  some  average  limits,

across  A,  B  and  C.

But  we  don't  see  that  as  an  opportunity here  because  for  us  this  tells  us  that,

if  future  batches  behave  like batch  A  or  C,  we  are  okay.

We  can  consider  and  say  that  future  or observations  of  future  batches,

will  fall  inside  specifications.

However, the  future  batches  behave  like  batch  B,

and  we  cannot  guarantee  that  we  will  have

all  observations  of  future  batches  falling inside  the  specification  limits  here.

I  think  I  would  just  also  use  this  time to  go  through  an  example  where  we  actually

also  take  into  consideration  the  whole approach  and  that  showed  the  flowchart,

and  how  we  would  actually  do  a  PPQ validation  using  the  script.

We've  brought  a  customer example  here,  just  find  it  here,

and  this  is  affecting  customers  who  have been  through  PPQ  with  the  validation

and  they  have  now produced  all  the  batches.

So  we  will  just  quickly  use  a  local  data

filter  to  just  look  at  the  three  first batches  they  produced  in  stage  2.

Here  we  have  our  model, and  we  run  the  script.

What  we  see  here  is  that  we  find ourselves  in  a  situation  where  we  have

both  prediction  limits and  tolerate  limits  outside  big.

In  fact  they  are  quite  far  outside.

But  the  best  guess  determined by  the  control  limit  is  in  fact,

that  we  are  inside  specification.

So  what  this  tells  us  is that  we  actually  feel  safe  enough,

concluding  that  we  have  passed  stage  2, and  can  now  go  into  stage   3a.

Actually  enable  us  by  the  customer to  put  their  products  on  the  market.

It's  important  to  stress  here  that  even though  we  go  from   stage 2  to  stage   3a,

we  do  not  reduce  the  [inaudible 00:23:22], and the production  you  see  we  have.

We  are  still  fairly  certain or  really  certain  actually  that,

no  bad  products  should  enter  the  market.

So  what  the  customer  would  do  next  then, is  simply  to  produce  the  next  batch,

which  would  be  batch  four  here  included in  the  model,  and  then  we  run  it  again.

Of  course  you  will  have  to  do the  sanity  check  of  the  model  again,

including  the  new  data.

What  we  see  here  now including  the  fouth  badge,

is  that  we  are  in fact in  the  same  situation  as  before.

However,  both  the  tolerance  limits, and  the  prediction  limits,

are  moving  much  closer to  the  control  limit,

and  even  more  important, they  are  moving  towards  the  spec,

which  is  what  we  really want  to  see  in  this  situation.

The  reason  this  is  that  we  actually noted  within  batch  variation  very  well.

However, due  to  having  only  three  or  four  batches,

we  don't  know  the  twin batch  variation  that  will...

This  is  what  actually gives  us  these  four  limits.

This  would  be  an  iterative  approach, producing  one  batch,  analyzing  the  results

and  continues  going  on  until  you actually  find  the  limits  inside.

Now  just  include  the  two  last  batches, run  it  again.

What  we  see  now  actually  is  that  we have  all  our  limits  inside  specification.

This  tells  us that  we  now  have  passed  stage   3a,

and  we  can  now  work  towards reducing  our  heavy  in  productivity,

by  implementing  sampling instead  of  100%  inspection,

and  continuous  process verification  and  so  forth.

This  we're  still  having  had  our  products on  the  market,

since  the  first  three  batches  we  produced.

In  an  image  like  the  graph  shown  here,

you  could  be  concerned  that  your prediction  limits  are  this  broad  still.

The  charterment  limits are  very  close  to  spec.

So  if  you  just  go  back  to  the  situation where  we  have  three  batches,

one  question  here  could  be, "Are  we  actually  safe,

when  we  have  this broad  prediction  limits?"

Could  we  end  up  sending bad  products  to  the  market?

Here  there  are  two very  important  points.

First  of  all,  at  this  stage,  we  still have  a  very  heavy  unit  in  product  QC.

They  will  ensure  bad  products does  not  go  to  the  market.

Furthermore,  we  have  to  remember  here that  we  are  actually  not  trying  to  say

something  about  the  specific batches  we  produced.

We  are  trying  to  say  something about  future  batches.

If  we  want  to  assess  the  performance of  these  individual  batches  per  batch,

what  we  actually  have  to  do  is that  we  have  to  go  back  to  our  model.

We  go  to  the  model  dialog  here,  and  we  do not  include  batch  as  a  random  and  fit.

We  use  this  as  a  fixed vacant  environment  instead.

I'll  just  apply  the  local  data  filter,

and  then  if  we  run  the  script  like  this,

we  will  actually  see  how  well  we know  the  individual  batches  here.

Here  we  see,  compared  to  the  other  graph, which  I  will  just  try  to  put  up  here,

we  now  have  much, much  narrower  limits  for  each  bad  batch,

telling  us  that  we  don't  have  to  fear that  any  observations  within  either

of  these  batches  are  actually outside  specifications.

So  it's  the  combination  of  this, and  the  heavy  in  product  QC,

which  actually  makes  us  confident that  we  can  have  the  three  batches,

go  to  the  market  with  the  products,

as  long  as  our  control  limits are  still  within  specifications.

Yes.

So  just  to  conclude  on  this, I  will  go  here.

So,  what  we  have  been  looking  at  here  is how  can  we  validate,

how  can  the  inner  validation  use  JMP  to predict  the  future  batches  will  be  okay?

So  we  have  seen  here  that,

if  you  can  describe your  validation  data  set  with  a  model,

you  can  actually predict  the  future  with  confidence.

This  can  be  done either  by  using  the  prediction  intervals,

or  the  tolerance  intervals.

So  what  we  have  made  here  and  over  here, is  a  script,

that  actually  automates visualizations  of  prediction  intervals

and  also  the  PDK  values.

It  calculates  and  visualize  tolerance intervals  using  the  same  number

of  effective  degrees  of  freedom  as  seen when  calculating  the  prediction  intervals.

Then  it  also  calculates and  visualize  the  control  limits.

But  it  is  important to  remember  before  using  the  script,

you  have  to  go  through the  sentence  the  check  is  represented.

But  here  JMP  already  offers  a  lot

of  unique  possibilities  to  justify our  assumptions  behind  the  model.

This  includes  variance  heterogeneity.

So  if  variances  are  not  equal  between the  batches  as  we  saw  here,

we  can  use  the  log  variance  model to  find  a  weight  factor,

and through  this  weight   factor, I  made a  weighted  progression  model  instead.

We  can  ensure  that  our residuals  are  normally  distributed,

and  if  they' re  not,  we  can  use  the  box-cox transformation  to  transform  our  data.

We  can,  through  the  Fit  model  platform also  evaluate  potentially  outliers

through  the  student  plug.

If  there  are  any  outliers,

we  always  exclude this  from  the  model  itself.

Then  at  last  we  can  actually  justify whether  or  not  our  random  factors

are  normally  distributed through  the BLUP  test.

A gain,  if  we  find  a  level  here which  does  not  match,

we  will  ask  for  the  outliers and  the  studentized  residual,

exclude  these  from  the  model  as  well.

You.