Level: Intermediate
Laura Castro-Schilo, JMP Senior Associate Research Statistician Developer, SAS

Multivariate data analysis has become an essential skill as the amount of data has skyrocketed and companies become more data-driven in their decision making. In this session, we showcase JMP and its unique visual and interactive approach to multivariate data analysis using a variety of approaches that rely on continuous, categorical and multiple-source data. We will begin with a foundational discussion of the essence of multivariate analysis: the idea that information contained in large numbers of variables can often be efficiently represented with a smaller number of variables. We then give an overview of general tools for analyzing multivariate data in JMP. We will use data from sensory analysis and consumer research to motivate and demonstrate classic unsupervised multivariate methods such as principal components analysis (PCA), multiple correspondence analysis (MCA) and a new technique in JMP 14, multiple factor analysis (MFA). Throughout, we will give clear guidelines as to when each analytical technique is appropriate and highlight the most important and useful software options.

JMP has a variety of flavors of multivariate techniques. One thing they all have in common is they aim to identify the basic structure of the data matrix they are applied to. Some techniques rely on this basic structure to reduce the dimensionality of the data at hand and facilitate their understanding. A tool that enables us to find the basic structure of a matrix is the singular value decomposition (SVD). The SVD produces vectors, which represent the dimensions of rows and columns of the matrix. It also produces singular values, which represent the importance of each of the dimensions. The multivariate techniques described in this session are based on using the SVD on transformed matrices and applying weights to rows, columns, or both. We will describe each of the techniques (PCA, MCA, and MFA) by emphasizing their similarities. Our goal is to improve the use and understanding of these techniques by using a common framework to describe them. Paired with demos and examples, this session prepares the audience to explore multivariate continuous, categorical, and multiple-source data.

laura.JPG

Multivariate_Breakout_Page_01.jpg Multivariate_Breakout_Page_02.jpg Multivariate_Breakout_Page_03.jpg Multivariate_Breakout_Page_04.jpg Multivariate_Breakout_Page_05.jpg Multivariate_Breakout_Page_06.jpg Multivariate_Breakout_Page_07.jpg Multivariate_Breakout_Page_08.jpg Multivariate_Breakout_Page_09.jpg Multivariate_Breakout_Page_10.jpg Multivariate_Breakout_Page_11.jpg Multivariate_Breakout_Page_12.jpg Multivariate_Breakout_Page_13.jpg Multivariate_Breakout_Page_14.jpg Multivariate_Breakout_Page_15.jpg Multivariate_Breakout_Page_16.jpg Multivariate_Breakout_Page_17.jpg Multivariate_Breakout_Page_18.jpg Multivariate_Breakout_Page_19.jpg Multivariate_Breakout_Page_20.jpg Multivariate_Breakout_Page_21.jpg Multivariate_Breakout_Page_22.jpg Multivariate_Breakout_Page_23.jpg Multivariate_Breakout_Page_24.jpg Multivariate_Breakout_Page_25.jpg Multivariate_Breakout_Page_26.jpg Multivariate_Breakout_Page_27.jpg Multivariate_Breakout_Page_28.jpg Multivariate_Breakout_Page_29.jpg Multivariate_Breakout_Page_30.jpg Multivariate_Breakout_Page_31.jpg Multivariate_Breakout_Page_32.jpg Multivariate_Breakout_Page_33.jpg Multivariate_Breakout_Page_34.jpg Multivariate_Breakout_Page_35.jpg Multivariate_Breakout_Page_36.jpg Multivariate_Breakout_Page_37.jpg Multivariate_Breakout_Page_38.jpg Multivariate_Breakout_Page_39.jpg Multivariate_Breakout_Page_40.jpg Multivariate_Breakout_Page_41.jpg Multivariate_Breakout_Page_42.jpg Multivariate_Breakout_Page_43.jpg Multivariate_Breakout_Page_44.jpg Multivariate_Breakout_Page_45.jpg Multivariate_Breakout_Page_46.jpg Multivariate_Breakout_Page_47.jpg Multivariate_Breakout_Page_48.jpg Multivariate_Breakout_Page_49.jpg Multivariate_Breakout_Page_50.jpg Multivariate_Breakout_Page_51.jpg Multivariate_Breakout_Page_52.jpg Multivariate_Breakout_Page_53.jpg Multivariate_Breakout_Page_54.jpg Multivariate_Breakout_Page_55.jpg Multivariate_Breakout_Page_56.jpg Multivariate_Breakout_Page_57.jpg Multivariate_Breakout_Page_58.jpg

Presented At Discovery Summit 2018

Presenter

Files

Published on ‎03-24-2025 08:52 AM by Community Manager Community Manager | Updated on ‎04-08-2025 09:07 AM

Level: Intermediate
Laura Castro-Schilo, JMP Senior Associate Research Statistician Developer, SAS

Multivariate data analysis has become an essential skill as the amount of data has skyrocketed and companies become more data-driven in their decision making. In this session, we showcase JMP and its unique visual and interactive approach to multivariate data analysis using a variety of approaches that rely on continuous, categorical and multiple-source data. We will begin with a foundational discussion of the essence of multivariate analysis: the idea that information contained in large numbers of variables can often be efficiently represented with a smaller number of variables. We then give an overview of general tools for analyzing multivariate data in JMP. We will use data from sensory analysis and consumer research to motivate and demonstrate classic unsupervised multivariate methods such as principal components analysis (PCA), multiple correspondence analysis (MCA) and a new technique in JMP 14, multiple factor analysis (MFA). Throughout, we will give clear guidelines as to when each analytical technique is appropriate and highlight the most important and useful software options.

JMP has a variety of flavors of multivariate techniques. One thing they all have in common is they aim to identify the basic structure of the data matrix they are applied to. Some techniques rely on this basic structure to reduce the dimensionality of the data at hand and facilitate their understanding. A tool that enables us to find the basic structure of a matrix is the singular value decomposition (SVD). The SVD produces vectors, which represent the dimensions of rows and columns of the matrix. It also produces singular values, which represent the importance of each of the dimensions. The multivariate techniques described in this session are based on using the SVD on transformed matrices and applying weights to rows, columns, or both. We will describe each of the techniques (PCA, MCA, and MFA) by emphasizing their similarities. Our goal is to improve the use and understanding of these techniques by using a common framework to describe them. Paired with demos and examples, this session prepares the audience to explore multivariate continuous, categorical, and multiple-source data.

laura.JPG

Multivariate_Breakout_Page_01.jpg Multivariate_Breakout_Page_02.jpg Multivariate_Breakout_Page_03.jpg Multivariate_Breakout_Page_04.jpg Multivariate_Breakout_Page_05.jpg Multivariate_Breakout_Page_06.jpg Multivariate_Breakout_Page_07.jpg Multivariate_Breakout_Page_08.jpg Multivariate_Breakout_Page_09.jpg Multivariate_Breakout_Page_10.jpg Multivariate_Breakout_Page_11.jpg Multivariate_Breakout_Page_12.jpg Multivariate_Breakout_Page_13.jpg Multivariate_Breakout_Page_14.jpg Multivariate_Breakout_Page_15.jpg Multivariate_Breakout_Page_16.jpg Multivariate_Breakout_Page_17.jpg Multivariate_Breakout_Page_18.jpg Multivariate_Breakout_Page_19.jpg Multivariate_Breakout_Page_20.jpg Multivariate_Breakout_Page_21.jpg Multivariate_Breakout_Page_22.jpg Multivariate_Breakout_Page_23.jpg Multivariate_Breakout_Page_24.jpg Multivariate_Breakout_Page_25.jpg Multivariate_Breakout_Page_26.jpg Multivariate_Breakout_Page_27.jpg Multivariate_Breakout_Page_28.jpg Multivariate_Breakout_Page_29.jpg Multivariate_Breakout_Page_30.jpg Multivariate_Breakout_Page_31.jpg Multivariate_Breakout_Page_32.jpg Multivariate_Breakout_Page_33.jpg Multivariate_Breakout_Page_34.jpg Multivariate_Breakout_Page_35.jpg Multivariate_Breakout_Page_36.jpg Multivariate_Breakout_Page_37.jpg Multivariate_Breakout_Page_38.jpg Multivariate_Breakout_Page_39.jpg Multivariate_Breakout_Page_40.jpg Multivariate_Breakout_Page_41.jpg Multivariate_Breakout_Page_42.jpg Multivariate_Breakout_Page_43.jpg Multivariate_Breakout_Page_44.jpg Multivariate_Breakout_Page_45.jpg Multivariate_Breakout_Page_46.jpg Multivariate_Breakout_Page_47.jpg Multivariate_Breakout_Page_48.jpg Multivariate_Breakout_Page_49.jpg Multivariate_Breakout_Page_50.jpg Multivariate_Breakout_Page_51.jpg Multivariate_Breakout_Page_52.jpg Multivariate_Breakout_Page_53.jpg Multivariate_Breakout_Page_54.jpg Multivariate_Breakout_Page_55.jpg Multivariate_Breakout_Page_56.jpg Multivariate_Breakout_Page_57.jpg Multivariate_Breakout_Page_58.jpg



Start:
Mon, Oct 8, 2018 09:00 AM EDT
End:
Fri, Oct 12, 2018 05:00 PM EDT
Attachments
0 Kudos