Choose Language Hide Translation Bar

Sowing the Seeds of Love for DOE (2023-EU-30MP-1203)

There is a big problem with how we are educating our future scientists: we tell them that you are only allowed to change one thing in an experiment and you have to keep everything else the same. When trying to learn about the effect of many factors on a process or system, it is much more effective to change all your factors simultaneously. But people rarely learn about this method, "Design of Experiments" or "DOE." Or they only hear about it later in their careers when they are resistant to new ideas. The result is a huge waste of time and resources due to inefficient experimentation. In the summer of 2022, JMP® launched a competition with an engaging and simple experiment to demonstrate the power of DOE. In this presentation, you will hear from the contest winner and the designer of the experiment. You will hear how experimenters of all ages can get their hands dirty growing garden cress under different conditions according to a statistically designed experiment. And you will see how the results can be easily analyzed with compelling visuals, as well as using sophisticated Functional DOE analysis in JMP® Pro.

 

 

I'm  Phil  Kay  and  I'm  joined  by  Weronika,  and  we're  going  to  talk  about  a  fun  experiment  that  we  set  up  as  a  competition  with  the  idea  that  it's  sowing  the  seeds  of  love  for  design  of  experiments.  And  it's  all  about  growing  cress,  which  I'm  sure  many  of  you  will  have  done  when  you  were  at  school  or  at  home.  And  there's  a  problem,  I  think,  in  how  we  educate  our  young  scientists.

T his  is  taken  from  the  British  Broadcasting  Corporation's  bite  size  for  Key  Stage  2,  so  for  young  scientists.  The  curriculum  in  the  United  Kingdom,  at  least,  tells  people  about  this  fair  test  idea.  And  that  is  when  you  are  testing  something,  you  need  to  make  sure  it  is  a  fair  test.  To  do  this,  everything  should  be  the  same  except  the  thing  you  are  testing.  So  we're  only  allowed  to  change  one  thing  at  a  time.

And  that's  not  ridiculous.  It's  not  necessarily  wrong,  but  it's  not  all  of  the  truth  as  well.  It's  not  necessarily  the  best  way  when  you  come  to  experiment  in  commercial  R&D  and  industry.  T he  consequences  of  this,  if  we  accept  that  we're  only  going  to  test  one  thing  at  a  time,  let's  imagining  we're  experimenting  to  understand  what  affects  the  height  of  garden  cress,  and  we  want  to  understand  what's  the  effect  of  light  conditions,  sunlight  or  dark.

We're  pretty  sure  that's  going  to  have  an  effect,  but  we'd  like  to  understand  what  it  is.  What's  the  effect  of  the  growing  medium  whether  we  grow  on  soil  or  on  cotton  wool?  Again,  we  think  it's  probably  going  to  have  an  effect.  We'd  like  to  experiment  to  understand  or  quantify  the  effect.  T he  fair  test  way  of  doing  this  would  be  to  take  control  conditions.  So  we  grow  some  cress  in  sunlight  and  on  soil.  And  then  we  do  a  fair  test.  We  just  change  one  thing.

So  for  Fair  test  1,  we  change  the  growing  medium  to  cotton  wool,  and  we  see  what  the  effect  is.  For  Fair  test  two,  to  understand  the  effect  of  light  conditions,  we  change  to  dark  and  we  keep  everything  else  the  same.  We  keep  our  other  factor  the  same.  T his  would  be  fine,  fair  tests  would  be  fine,  except  nature  doesn't  necessarily  play  by  those  rules.  Nature  doesn't  play  fair  all  the  time.  And  what  we  should  really  be  doing  in  this  situation  is  a  designed  experiment.  And  in  this  case,  we  would  test  all  possible  combinations.  W e  wouldn't  just  be  changing  one  thing  at  a  time,  we'd  make  sure  we  tested  all  the  possible  combinations , we  changed  all  the  factors  according  to  a  strategy.

And  what  this  enables  us  to  do  is  gain  a  richer  understanding.  So  we  can  understand  things  like  interactions  between  factors.  And  for  this  cress  experiment,  we  can  see  the  height  at  day  five  after  five  days  of  growing,  we're  looking  at  the  effect  of  light  condition,  sunlight  or  dark.  And  we  can  see  that  the  effect  of  light,  whether  it's  sunlight  or  dark,  is  dependent  on  the  growing  medium.

F or  soil,  we  are  seeing  a  bigger  difference  between  dark  and  sunlight  than  we  are  with  cotton  wool.  This  is  an  interaction.  We  can  only  understand  these  interactions  when  we  use  designed  experiments,  and  these  are  often  critical  in  commercial  R&D.  So  what  we  need  is  some  fun  ways  of  introducing  these  ideas  to  young  students,  to  students  of  any  age.

Now,  let  me  go  to  a  digression  where  we  got  the  name  of  this  talk  from.  It's  from  a  song  by  a  group  called  Tears  for  Fears.  It's  not  a  very  new  song,  so  if  you're  young,  you  may  not  have  heard  it.  If  you're  a  bit  older,  you'll  probably  know  it  because  it  was  nominated  for  the  best  postmodern  video  at  the  MTV  Music  Awards  30  odd  years  ago,  whatever  best  postmodern  video  means.

The  first  line  is,  high  time  we  make  a  stand  and  shook  up  the  views  of  the  common  man.  I  don't  know  if  I  like  that  first  line  very  much,  but  I  think  it's  appropriate  here.  We'd  like  to  shake  up  people's  views  about  how  we  should  do  experiments,  how  we  should  change  the  factors  in  an  experiment.  I  was  a  little  bit  concerned  that  this  is  a  British  band  that  people  may  not  have  heard  of  Tears  of  Fears,  may  not  have  heard  of  this  song.  So  I  looked  at  the  data  and  actually  I  found  that  it  was  a  worldwide  hit  and  particularly  big  in  Canada.  It  reached  number  one  there  in  1989.

The  Cress  experiment,  how  did  this  start?  Well,  my  colleague,  Michael,  in  marketing  here  at  JMP,  wondered  if  we  could  make  a  fun  experiment  out  of  growing  garden  cress.  That  hadn't  occurred  to  me.  When  I  first  heard  this,  I  thought,  that's  a  brilliant  idea.  What  we  wanted  to  do  was  create  an  experiment  that's  simple  enough  for  anyone,  for  experimenters  of  all  ages,  young  experimenters,  old  experimenters.  We  wanted  it  to  be  simple  enough  you  could  do  it  at  home.  One  of  the  challenges  with  coming  up  with  good  examples  of  design  of  experiments  is,  science  is  generally  expensive.

Measuring  the  outputs  of  your  scientific  experiments  often  requires  really  expensive  instruments.  So  we  wanted  something  that  was  simple  and  cheap  to  do.  And  we  wanted  it  to  be  an  interesting  way,  just  a  fun  way  to  introduce  the  key  concepts  of  statistical  design  of  experiments.  W e  didn't  want  it  to  be  difficult,  we  didn't  want  you  to  have  to  do  lots  of  very  complex  analysis.  We  wanted  it  to  be  very  immediate  and  fun  way  of  introducing  these  ideas.

I  did  some  experiments  in  the  Kay  Family  Research  Kitchen  here  with  some  assistants.  I  had  my  eight- year- old  daughter  and  my  15- year- old  daughter  help  me  with  this.  My  12- year- old  daughter  was  too  busy  watching  DOC,  I  think.  And  it  was  very  successful.  They  had  a  good  time  doing  it,  I  think,  and  it  started  some  interesting  discussions.

W e  did  this  experiment  and  we  set  up  the  experiment  so  that  we  were  growing  some  of  them  in  soil,  some  of  them  in  cotton,  some  of  them  in  dark,  some  of  them  in  light  conditions.  And  my  eight- year- old  child  said,  "Well,  Dad,  it  would  have  been  easier  if  we  just  put  all  the  soil  ones  in  the  dark  and  all  the  cotton  ones  in  the  light."

I  didn't  say  anything,  so  I  wait  for  my  15- year- old   to  respond.  She  said,  "Well,  but  then  we  wouldn't  know  if  it  was  the  soil  or  if  it  was  the  dark  that  had  the  effect."  This  is  a  beautifully  concise  way  of  describing  confounding.  This  was  a  very  proud  moment  for  me  as  a  parent  that  one  of  my  children  could  explain  this  concept  of  confounding  in  a  much  more  succinct  way  than  I  have  ever  managed  to  do.

And  we  got  great  data.  T he  15- year- old  lost  interest  after  we'd  set  it  up,  but  my  eight- year- old  daughter  carried  on  with  the  experiment,  observing  it  over  a  number  of  days.  W e  measured  the  height  of  the  tallest  plant  in  each  pot,  actually  within  each  compartment  of  an  egg  box.  W e  measured  those  and  she  took  all  the  measurements  and  we  got  some  really  good  quality  data.

Let  me  just  show  you  first  of  all,  though,  the  actual  experiment.  T hree  factors,  we  tested  substrate,  soil  or  cotton  wool,  the  light  conditions,  dark  or  light,  and  we  used  plain  or  curled  cress  types.  We  got  two  different  types  of  cress  seeds.

And  this  is  a  two- to- the  three  full  factorial  for  those  DOE  nerds  out  there.  And  we've  replicated  on  the  two  to  the  three  minus  one  half  factorial  there.  So  that  gives  us  12  runs,  12  pots,  which  works  well  because  in  the  UK  at  least,  egg  boxes  generally  come  in  sixes.  So  we  could  use  two  egg  boxes  to  do  these  12  runs.

And  as  I  said,  the  data  was  very  good.  We  can  do  some  simple  analysis.  This  is  one  of  the  things  I  like  about  it,  is  that  we  can  just  look  at  the  ones  that  were  grown  in  the  light  and  the  ones  in  the  dark  and  see  how  the  height  is  different  after  seven  days.  And  it's  very  compelling,  there's  a  very  big  difference.

It  wasn't  really  the  difference  that  I  was  necessarily  expecting,  and  it  was  an  interesting  surprise  to  all  of  the  experimenters  involved. W e  can  do  some  simple  analysis,  just  some  simple  visuals.  Let's  just  plot  the  heights  versus  light  conditions.  And  again,  you  can  see  the  big  effect  there,  big  effect  of  substrate,  very  little  effect  of  cress  type  there.  So  introducing  these  simple  analysis,  and  then  we  can  obviously  take  it  to  a  greater  level  of  sophistication,  build  a  full  statistical  model.

And  that  brings  us  to  the  profiler,  which  I  think  is  just  such  a  great  way  of  understanding  design  of  experiments  and  statistical  models.  Very  powerful,  compelling  way  to  understand  the  effects  of  each  factor  and  interactions  between  factors  as  well.  I f  we  look  at  day  seven,  we  can  see  there's  an  interaction  between  light  conditions  and  our  substrate.  And  we  can  take  it  to  an  even  greater  level  of  sophistication  because  this  is  actual  functional  data.

I f  you're  interested  in  Functional  Data  Explorer,  well,  this  is  a  great  example  data  set  because  we're  collecting  the  height  data  as  a  function  of  time  for  each  of  the  runs  of  our  experiment.  W e  can  use  Functional  Data  Explorer  and  Functional  DOE  to  understand  how  the  factors  affect  the  shape  of  this  growth  curve.

We  can  see  the  rapid  growth  with  soil  versus  cotton  wool.  We  can  see  the  rapid  growth,  increased  rate  of  growth  in  the  dark,  and  actually  the  fact  that  it's  starting  to  die  off  towards  the  end  of  the  experiment  here.  I  was  really  delighted  with  how  the  experiment  went.  It  was  very  simple  to  do,  very  compelling,  really  accurate  results.  It's  so  hard  to  find  experiments  that  people  can  do  at  home  where  they  can  get  an  accurate,  continuous  quantitative  response  out  that  they  can  measure  just  with  a  plastic  ruler  in  this  case.

We  went  ahead  and  did  this  as  a  competition.  I  wrote  a  blog  post  about  it,  which  we'll  provide  the  link  to  that  as  well.  W e  ran  this  last  summer,  summer  of  2022.   I'm  going  to  introduce  next  our  competition  winner,  Weronika.  I've  also  done  some  visuals  of  Weronika's  results  in  JMP  Public.

We'll  share  the  link  to  that  as  well  so  you  can  actually  see  Weronika's  data,  download  the  data  yourself  if  you  log  into  JMP  Public  and  see  the  results  for  yourself.  But  now,  Weronika  is  going  to  show  you  what  she  found  in  this  cress  experiment  and  the  impressive  results  that  she  got  that  meant  she  was  the  competition  winner.  I  think  you're  on  mute,  Weronika.

Thank  you,  Phil  for  introducing  me.   I  would  like  to  share  with  you  my  experience  in  a  competition,  my  experience  regarding  design  of  experiments,  regarding  the  planting  of  the  cress.  T he  main  aim  of  the  challenge  was  to  introduce  design  of  experiments  to  researchers,  to  engineers,  to  students,  to  any  of  the  people.  But  also  in  that  experiment,  we  have  to  check  with  design  of  experiments  what  factors  has  influence  on  the  health  of  the  garden  products.

T hen  defined  factors  by  the  organizers,  Phil ,   there  were three  factors.  It  was  the  surface.  W e  use  cotton  wool,  and  g arden  soil.  Then  the  second  factor  was  light  conditions.  So  we  plant  garden  cress  in  sunlight  and  in  the  dark.  And  also  we  had  to  check  what  influence  has  been  soaking  on  the  height.

What  was  my  first  impression?  As  Phil  said,  they  wanted  experiment  to  be  simple  enough  for  everybody.  But  I  was  not  so  convinced  at  the  beginning  because  when  taking  a  look  at  my  previous  experiments  with  planting,  it  was  not  so  good.  So  I  didn't  expect  that  my  garden  cress  acted  in  different  way.  And  I  wasn't  mistake,  I  wasn't  wrong.  My  first  results  were  good.

First  of  all,  I  put  so  many  seeds  in  one  spot  that  the  pre- soak  samples  become  a  shell.  Some  kind of shell.  They  didn't  germinate ,  so  I  don't  receive  any  plants.  Moreover,  my  egg  box  was  broken  by  the  water,  which  can  be  seen  here.  It  was  broken.  Also,  some  marker  was  destroyed  and  I  saw  no  numbers  of  spot.  And  also  the  soil  migrated  from  one  hole  to  the  adjacent  one.  I t  was  mixed  with  the  cotton,  especially  when  I  put   the  waters  on  the  soil,  it  was  not  good.

After  my  first  failure,  I  drove  some  conclusion  why  I  received  a  failure.  First  of  all,  I  decided  to  use  plastic  espresso  cups  instead  of  the  paper  cups  because  plastic  is  better  than  water.  Use  less  number  of  seeds  in  each  hole.  Don't  put  as  many  as  I  can,  but  do  it  smartly.  And  also  in  this  moment,  I  come  to  idea  to  maybe  add  the  fourth  factor  to  my  experiment,  density  of  the  seeds.  Also,  I  wanted  to  check  not  only  how  surface,  light  condition,  and  soaking  influenced  the  height,  but  also  the  density  of   seed.   I  set  two  levels,  low  and  high.

In  low  density,  I  use  20  seeds  and  evenly  spread  them  in  a  cup.  In  high  density,  I  took  40  seeds  and  try  to  put  every  in  the  middle  of  the  cup, so it's  [inaudible 00:16:09] .  M y  design  had  four  factors.  Each  factor  had  two  levels.  I  used  a  full  factorial  design  as  a  design  time.  I  received  16  number  of  treatments,  2  to  the  power  of  4.

I  decided  to  replicate  eight  treatments  in  order  to  receive  variability  and  be  able  to  estimate  some  standard  deviation  and  so  on.  I n  total,   I  received  24  test  runs.  Experiment  was  done  in  August  when  it  was  very  warm,  so  it  was  nice  weather  for  a  planting  and  being  a  gardener.  Okay,   those  are  my  results.  Here  we  can  see  design  table  with  all  factors,  test  runs  24.  Here  I  put  the  height  after  three,  five,  and  seven  days.

In  that  table,  you  can  see  the  factor  effect  estimates  after  seven  days.  We  can  end  with  the  bold  font.  I  marked  variables,  factors  which  I  found  to  be  statistically  significant,  and  it  was  surface,  light,  density.  Soak   occurred  not  to  be  important,  but  alone  as  a  main  effect  only.

It  occurred  to  be  important  in  two  factor  interactions.  T he  interaction  between  surface  and  soak  and  the  light  occurred  to  be  significant,  so  we  cannot  assume  that  the  soaking  is  not  important.  Also,  two  three-way  interactions  were  significant,  four- way  interaction  not  significant.  N ow  I  would  like  to  present  you  some  pipeline  and  some  steps  which  I  used  in  my  design  experiment.   I  think  that  it's  quite  a  good  approach  which  everyone  can  use  in  the  experiment.

First  of  all,  we  have  to  generate  the  design.  As  a  first  step,  we  shall  define  what  factor  we  want  to  check  and  what  levels.  And  when  we  set  it,  we  have  to  choose  design  type,  because  usually  choosing  the  type  is  dependent  on  the  factors,  how  many  factors  we  have,  or  is  only  two  or  three,  or  maybe  we  have  no  factors,  how  many  levels.  D efine  number  of  replicates  we  have  to  include,  and  then  we  can  generate  this  table  with  which  in  JMP  is  very  quickly  and  convenient.  When  we  have  a  table,  we  can  run  experiment,  collect  data, put  in  a  table.

When  we  have  everything,  we  can  go  to  the  next  step,  estimation  of  the  factors.  We  formulate  the  full  regression  model  and  estimate  factor  effects.  So  we  check  which  factor  is  important.  Here  you  can  see  the  main  effects  plots,  two- way  interaction  plots,  three- way  interaction  plots  after  seven  days.  What  it's  worth  to  mention  is  that  interaction.  This  is  what  Phil  said,  that  the  interactions  are  important.  They  happen  in  the  real  world.

And  here  it's  a  good  example.  F or  example,  when  we  have  cotton  at  the  surface,  it's  better  to  use  no  soaking.  If  you  use  soil,  it's  better  to  pre-soak  samples.  And  this  is  when  we  would  check  only  one  factor at  a  time,  so  for  example,  take  soil.  And  with  soil,  we  would  receive  that  presoking  is  better.  With  a  cotton ,  we  would  use  also  pre-soaking,  but  in  that  case  it's  not  true.  T his  is  the  beauty  of  the  interactions.  And  that's  why  we  have  to  take  into  consideration  their  health.

Then,  statistical  test.  C hecking  which  effect  is  important.  In  JMP,  we  can  also  see   parameter  estimates,  the  effect  tests,  and  conclude  which  is  significant.  W hen  we  see  which  are  not  significant,  we  should  redefine  the  model  after  dropping  the  non- significant  effect  and  calculate  estimate  one  more  time,  linear  regression.

In  that  case,  linear  regression .  But  we  cannot  finish  on  that,  but  we  have  to  also  check  assumption  that  our  model  is  correct,  statistically  correct.  So  we  have  to,  for  example,  check   the  residuals  for  normal  distribution.  It  can  be  done  with  the  normal  probability  graph  of  residuals  in  a  JMP.  When  we  see  the  observations,  residuals  follow  the  straight  line  and  are  in  the  border  range,  it  means  that  it's  correct,  it's  normal  distribution.  But  also  we  can  check  it  with  the  test,  with  numerical  test  like  Shapiro- Wilk  test,  to  check  if  residuals  follow  normal  distribution,  and  then  mean  test  to  check  if  the  mean  value  is  equal  to  zero.

When  we  finished  that,  we  can  draw  the  conclusion.  In  my  conclusion,  in  my  experiment,  was  that  the  most  important  factor  was  light,  and  its  effect  was  about  eight  times  higher  than  the  effect  of  the  second  most  important.  Plants  cultivated  in  dark  grow  higher  than  those  in  the sun .  The  other  significant  factor  was  surface,  and  I  obtain  the  result  that  the  garden  soil  is  better.  In  garden  soil,  the  plants  grow  higher.  Also,  the  fourth  factor  which  I  added,  sowing  density,  also  occurred  to  be  important,  but  its  significance  increased  over  the  time.

After  the  three  days,  sowing  density  was  not  insignificant,  but  after  five  days  it  was  significant,  and  after  seven  days  it  was  even  more  significant.  So  it  increased  with  time.  A lso  in  general,  during  seven  days,  three  different  three-way  interaction  were  significant,  which  suggests  that  all  factors  interact  really  together  and  we  cannot  interpret  them  separately.  That  all,  sun,  soil,  water,  everything  in  nature  is  combined  and  have  some  dialog  inner  dialog.

Also,  except  of  that,  I  checked  different  physical  things,  let's  say.  And  cress  cultivated  inside  light  become  green  and  developed  big  leaves.  Whereas   in  dark,  they  were  very  yellowish,  they  were  fragile.  When  I  touched  them,  they  broke  down.  E xcept  that  they  were  higher,  but  they  were,  I  would  say,  not  healthy. And  also  roots  for  plants  cultivated  inside  light  go  longer.  Here  you  can  see  inside…  it's  very  difficult  to  see  because  roots  are  white  and  cotton  is  white.  But  you  can  see  somehow  that  they  are  here  rolling  around  the  roots,  and  here  there  is  just  plain  cotton.  With   soil,  it's  better  to  visualize  because  it's  better  to  discern the s oil.  And  we  can  see  that  in  some  light,  we  have  longer  roots,  whereas  in  dark,  they  are  very  short.

And  to  maximize  the  height  after  seven  days,  we  shall  use  soil,  we  should  pre-soak  samples,  seeds,  we  shall  put  them  in  dark  and  use  high  density.  Those  are  the  picture  of  my  results.  We  can  see  that   throughout  the  experiments,  samples  in  dark  all  the  time  they  were  yellow,  they  were  thin,  whereas  in  the  sunlight  they  were  healthy  green and thicker.

My  conclusion  regarding  the  design  of  experiments,  my  experience.  Design  of  experiment  is  a  great  tool  which  can  be  used  to  optimize  any  process.  Even  something  like  cultivated  garden  cress  can  be  fitted  to  the  design  of  experiments.  It  helps  to  incrementally  gain  knowledge  about  the  process.  For  example,  like  me  at  the  beginning,  I  had  no  idea  how  the  density  influenced  the  height,  but  when  I  put  so  many  things,  I  decided  that  I  gain  knowledge  that  it  has  influenced  and  I  have  to  do  something  about  it  and  also  consider  it.

We  can  also  increase  our  confidence  about  our  our  results,  and  that  our  results  will  be  indeed  statistically  significant.  So  we  will  have  no  biases.  We  know  that  interactions  are  involved.  Of  course,  some  factors  can  be  alias  with  others,  for  example,  in  factor  design.

But  the  advantage  of  design  of  experiment  is  that  we  are  aware  which  one  are  confounded,  and  we  can  draw  proper  conclusion  based  on  that.  So  if,  for  example,  one  pair  of  confound  factors  appears  to  be  significant,  but  we  don't  know  exactly  which  one,  we  know   to  what  we  have  to  focus  on.  And  also,  do  not  be  afraid  and   disaffected  in  the  first  try  to  not  be  successful,  treat  it  as  a  lesson  and  draw  a  conclusion  why  it  happened.

D on't  give  up,  but  sit,  think,  why  I  failed,  what  I  can  do  in  other  way,  what  I  can  improve,  and  do  it  and  try  one  more  time.  And  design  of  experiment  can  bring  fun  with  the  proper  attitude  because  this  experiment  really,  really  have  fun.  And  as  I  said,  it  was  August,  it  was  very  sunny,  so  it  was  nice  weather,  nice  time  to  spending  time  on  the   [inaudible 00:27:04] .  Thank  you  for  your  attention.

Yes,  thanks  very  much  and  thanks,  Weronika.