Choose Language Hide Translation Bar

Measurement Systems Analysis for Curve Data Using Functional Mixed Models - (2023-US-PO-1504)

This presentation is an extension of the talk, "Measurement Systems Analysis for Curve Data Using Functional Random Effects Models," presented at JMP Discovery Europe 2023. Here, a functional random effects model was used to perform a Functional Gauge R&R analysis on data that contained a set of curves as the response. In this application, the functional model was expanded using the eigenfunctions and then was expressed as a random effects model, where variance components were estimated using standard methods. This analysis was done using the Functional Data Explorer and Fit Mixed platforms.

 

In the updated version of this presentation, I show that it is possible to include fixed effects in this type of analysis using the same model expansion approach. The functional model is still expanded using the eigenfunctions but is expressed as a generalized mixed model instead.

 

 

 

Hi,  my  name  is  Colleen  McKendry,

and  I  am a  senior  statistical  writer  at  JMP,

but  I  also  like  to  play around  with  functional  data.

This  project  is  on  measurement systems  analysis  for  curve  data.

First,  I'm  just  going  to  give  a  very  brief background  on  MSA  studies  in  general.

MSA  studies  determine  how  well  a  process

can  be  measured  prior to  studying  the  process  itself.

It  answers  the  question, how  much  measurement  variation  is

contributing  to  the  overall process  variation.

Specifically,  the  Gage  R&R  method,  which is  what  I'll  be  using  in  my  analysis,

determines  how  much  variation  is  due to  operation  variation

versus  measurement  variation.

You  can  use  a  Gage  R&R  crossed  MSA  model when  you  have  both  a  part  and  an  operator.

The  model  you  can  see  here  for  your measurement  Y  sub  I J K,

that's  going  to  be  the  Kth  measurement made  by  the  Jth  operator  on  the  Ith  part.

In  this  model,  you  have  a  mean  term,

a  random  effect  that  corresponds to  the  part,

a  random  effect  that  corresponds to  the  operator,

and  a  random  effect  that  corresponds to  the  interaction  or  cross  term.

You  also  have  an  error  term.

This  is  simply  a  random  effects  model,

and  all  of  these  random  effects  are normally  distributed  random  variables

with  mean  zero  and  some corresponding  variance  component.

When  you  fit  this  model,

you  can  use  that  to  estimate the  variance  components

and  then  use  those  variance component  estimates

to  calculate  the  percentage gage  R&R  using  the  formula  shown  there.

In  a  standard  MSA  study,

all  of  your  measurements  are going  to  be  single  points.

But  what  happens  if  that's  not  the  case?

What  if  instead  you're  measuring something  like  a  curve?

That  question  was  the  motivation behind  this  project.

There  was  a  client  of  JMP  that  was a  supplier  of  automotive  parts,

and  they  had  a  customer  that  specified

that  a  part  needed  to  have a  specific  force  by  distance  curve.

Obviously,  the  client  wanted  to  design

their  product  to  match the  customer  specified  curve.

In  order  to  do  that,

they  wanted  to  run a  functional  response  DOE  analysis

and  JMP  to  design their  product  in  order  to  do  so.

However,  before  spending  money on  that  experiment,

they  wanted  to  perform  an  MSA  on  their ability  to  measure  the  parts  force.

There  are  a  lot  more  details  about  the actual  data  and  this  problem  specifically

in  an  earlier  2020  white  paper

titled  Measurement  Systems  Analysis for  Curved  Data.

If  you  want  any  more details,  look  that  up.

It  should  be  on  the  community.

This  in  this  graph,  that's what  the  data  looks  like.

On  the  Y-axis,  we  have  force, and  on  the  X-axis,  we  have  distance.

It  looks  like  there   are  only  10  curves  in  this  graph,

but  there  are actually  250  total  curves.

There's  just  some  clustering  going  on.

There  are  10  different  parts, five  different  operators,

and  five  replications  per  part operator  combination.

A  little  bit  about  this  data,  obviously,

these  measurements  are curves  and  not  points.

The  data  was  collected  evenly  spaced  in time,  but  not  evenly  spaced  in  distance.

There  were  some  earlier  projects

that  tried  a  few  different  ways  to  perform some  type  of  MSA  study  on  this  data.

They  used  some  functional  components, but  stayed  pretty  true  to  a  standard  MSA.

When  I  looked  at  this  data,  I wanted  to  take  a  true  functional  approach

because  I  have a  background  in  functional  data.

Functional  data  analysis

is  useful  for  data  that  are in  the  form  of  functions  or  curves.

There  are  many  techniques  to  handle unequally  spaced  data,

a  lot  of  which  are  available  in  the Functional  Data  Explorer  platform  in  JMP.

My  goal  was  to  combine  functional  data methods  with  traditional  MSA  methods

to  perform  some  type  of  functional measurement  systems  analysis.

My  solution  was  to  create  a  functional random  effects  model

by  expanding  the  functional  model using  eigen  function  expansion,

rewriting  that  as  a  random  effects or  a  mixed  model

if  you  had  any  fixed  effects  also,

and  then  estimating  the  variance

components  associated with  the  part  and  operator  terms.

To  go  a  little  bit  into the  model  notation.

For  your  functional  model, you  have  Y  sub  I J K,

but  this  time  at  a  particular  distance,  D,

to  account  for  the  functional nature  of  the  data.

You're  going  to  have  a  functional mean  term,

a  functional  random  effect that  corresponds  to  the  part,

a  functional  random  effect that  corresponds  to  the  operator,

and  a  functional  random  effect that  corresponds  to  the  cross  term

and  also  your  error  term.

Here,  when  you  do  the  model  expansion,

it's  a  little  mathy,  but  essentially,

instead  of  having  one  variance  component associated  with  the  part

and  one  variance component  associated  with  the  operator,

you  now  have  multiple  variance  components associated  with  each  of  those  things.

That's  going  to  account for  the  functional  nature.

When  you're  fitting  the  model and  estimating  the  variance  components,

like  I  said,  now  you're  going  to  have  this

set  of  variance  components that  you  can  sum  together

to  estimate  the  functional variance  component  for  part

and  the  same thing  for  operator  and  the  cross  term.

Once  you  have  all  those  individual variance  components,

you  can  use  those  to  estimate  the  % gage  R&R  just  like  in  a  standard  MSA.

How  do  I  do  this  in  JMP?

It's  a  multi  step  process that's  outlined  here,

and  there  are  some  more  details in  other  slides.

But  essentially,  I  estimate  the  mean  curve in  FDE  and  obtain  the  residual  curves.

I  then  model  the  residual  curves  in  FDE  to obtain  the  eigen  functions  needed

for  the  eigen  function  expansion of  the  functional  model

and  save  those  eigen  functions to  the  original  data  table.

I'm  going  to  use  those  saved  eigen functions  in  FitMix

to  create  a  random  effects  model

or  a  mixed  model  if you  also  have  fixed  effects  in  your  data.

I'm  going  to  use  nesting  of  the  eigen function  formula  columns

and  also  the  par  and  operator  variables

to  define the  appropriate  model  specifications.

This  is  what  your  fit  model window  would  look  like.

Once  I  did  all  that  for  this  data,

I  was  able  to  estimate  the  variance components  and  calculate  the  %  gage  R&R,

which  in  this  case  was  3.3030.

This  indicated  an  acceptable measurement  system

according  to  some  ranges  that  were  defined in  this  paper  by  Baren  team.

That  was  it  for  the  data analysis  for  my  part.

This  result  was  actually  very  similar to  a  worst-case  scenario

that  was obtained  in  a  presentation  in  2019.

It  would  be  interesting  to  know  if that  was  a  coincidence

or  if  the  results  would  be  similar for  different  data  as  well.

Some  thoughts  that  this  project  provoked.

Should  we  add a  functional  random  effect  for  ID

to  capture  the  within  function correlation  across  distance?

This  type  of  functional  random  effect

is  actually  really  important in  functional  data

and  is  a  big  benefit  of  accounting for  the  functional  nature  of  the  data.

Unfortunately,  in  this  data  in  particular.

Anytime  I  created  a  model  with  this  term,

the  corresponding variance  components  were  zero,

so  it  didn't  really  capture  anything extra,  but  it  would  be  interesting

to  see  if  it  could  be  useful in  different  types  of  data.

I  also  think  it  would  be  interesting  if  we

could  calculate  a  confidence interval  for  the  %  gage  R&R.

There  were  also  some  minor,  not  issues,

but  brought  up  questions  of  the  residuals in  the  random  effects  model.

I  observed  a  cyclical  nature  in  those.

That's  not  always  great.

I  don't  think  it  was  a  huge  deal,

but  I  would  like  to  have  a  good reason  for  why  that  was  the  case.

That's  it. Thanks  for  listening.

If  you  want  more  details  on  this  project,

it's  very  similar  to  a  full  30-minute  talk that  I  presented  at  Discovery  Europe,

and  so  that  video  is on  the  community  as  well.

Thank  you.