Choose Language Hide Translation Bar

Laney P' and U' Control Charts New in JMP 17 - (2023-US-PO-1405)

Traditionally, control charts for attribute data (p-charts and u-charts) assume the data is either binomial or Poisson, and that the mean is constant over time. However, this assumption is rarely true in practice. David Laney developed a technique that solves the problem so that control charts work well, whether the mean parameter is stable or not. This talk explains the evolution of the Laney P' and U' charts and gives examples of how best to apply them.

 

 

Hi ,  I 'm  Annie  Dudley ,

and  I  am a  Control  Chart  Developer  for  JMP .

I  am  here  today  to  talk  with  you   about  the  new  in  JMP  version  17

Laney  P '  and  U '  control  charts .

Let 's  review.

The  control  charts   are  intended to  show  the  stability  of  your  process .

If  your  process  is  not  stable , then  you  can 't  reliably  make  the  same  size

or  the  same  parts ,   and  customers  will  get  upset

and  not  want  to  purchase  from  you  again .

In  this  case ,  we 're  talking  specifically about  attribute  charts ,

which  are  based  either  on  the  Binomial or  the  Poisson  distribution ,

and  they  assume  a  constant  variance,

a  constant  variance  because   both  the  Binomial  and  the  Poisson

are  a  one  parameter  distribution .

You  got  one  parameter  for  the  mean and  then  manipulations  on  that

for  the  variance .

But  what  happens  if  your  variance   is  not  constant  over  time ?

When  you  have  a  non -constant  variance ,

in  other  words ,

if  you  have  more  variance  in  your  model or  in  some  cases ,  less ,

more  variance  in  your  model   than  you 're  currently  describing ,

that 's  referred  to  as  overdispersion .

One  parameter  model   cannot  model  overdispersion .

David  Laney  proposed   that  we  normalize  the  data

and  we  account  for  varying  subgroup  sizes , we  compute  a  moving  range ,

and  average  that ,   and  then  we  insert  that  into  our  model ,

into  our  limits  for  the  control  charts .

Let 's  take  a  look  at  this  in  JMP .

Let 's  keep  in  mind  this  assumption  is  that  for  the  regular  P  and  U  charts ,

we  have  this  assumption of  the  probability  of  nonconformity

is  the  same  for  each  sample .

In  other  words ,  we  have  assumption that  our  variance  is  constant .

Let 's  look  briefly  at  our  limits  formulas .

For  the  P  chart ,   it 's  the  average  plus  or  minus  3

times  our  standard  error and  the  same  with  the  U  chart .

Again ,  remember , we  have  this  one  parameter .

There 's  not  much  that  we  can  do if  our  limits  are  not  constant  here

or  if  our  variance  is  not  constant .

What  do  we  do  if  we  have  overdispersion ?

This  is  the  big  question .

What  Laney  proposed was  basically  we  standardize  our  data ,

we  take  the  moving  range , we  compute  an  average  moving  range ,

and  then  we  adjust  that and  form  a  sigma  sub  Z .

These  limits  that  Laney  is  proposing look  very  similar  to  the  other  limits .

We  were  just  inserting  the  sigma  sub  Z into  the  formula

right  before  the  standard  error for  both  the  P  charts  and  the  U  charts .

Let 's  take  a  look  at  an  example .

I 'm  going  to  start  with  a  data  set from  the  JMP  sample  data  folder .

We  have  lot  sizes that  are  not  terribly  large .

F or  our  first  example , let 's  look  at  this  one .

I 'm  going  to  go  through the  interface  for  this  first  one .

We 'll  use  dialogs  for  future  ones .

We  have  the  number  of  defective washers  that  we 're  going  to  model .

I 'm  going  to  change the  chart  type  to  attribute .

Before  we  go  to   Poisson ,  I  have  my  lot as  my i dentifier  for  our  X -axis ,

and  we 're  just  going  to  use the  constant  lot  size  of  400 .

Drop  that  in  the   n Trials  drop  zone .

Now ,  Laney 's  charts  are  only  available when  our  statistic  is  proportioned ,

so  I  have  to  change  that   back  to  proportion .

When  the  statistic  is  proportion ,   then  we  have  four  choices

for  our  sigma  value .

I 'm  going  to  choose  Laney  P '. But  first ,  let 's  take  a  look  here .

We  see  we  have  two  points  out  of  control on  this  P  chart,

which  is  indicating  to  us   that  this  is  not  a  stable  process .

We  can  certainly  turn  on  the  limits , and  that  just  affirms  what  we  spotted .

If  we  change  the  Laney  P '  chart , that  sigma  sub  Z

was  clearly  greater  than  1 ,   because  now  our  limits

have  jumped  up  considerably .

While  the  points  being  plotted   are  the  same  as  they  were  on  the  P  chart ,

the  upper  limit  in  particular

has  gotten  larger .

There 's  a  fairly  simple  example .

Let 's  move  on  to  another  example .

This  is  again ,  another  data  set   out  of  this  JMP  sample  data .

In  this  case ,  we 're  looking at the  number  of  defects  out  of ...

We  have  several  units   that  are  being  tested ,

several  braces that  are  being  tested  in  each  unit .

Each  unit  isn 't  the  same  size .

This  is  another  scenario  where

this  problem with  the  non -constant  variance  pops  up.

We  can  count  the  number  of  defects .

We 're  not  counting the  number  of  defectives.

We 're  counting the  number  of  defects  per  unit .

In  this  case , our  unit  size  is  varying .

Let 's  choose  a  U  chart under  the  Control  Chart  menu.

We  have  our  number  of  defects , and  we  have  our  date

as  our  subgroup  identifier ,   and  we  have  our  unit  size

as  our   n Trials .

We  talked  about  having that  non -constant  unit  size ,

so  we  have  varying  limits.

We  do  see  some  of  the  points are  out  of  control  here .

Again ,  this  appears  to  be   a  non -stable  process,

which  is  cause  for  panic or  having  to  readjust  everything .

Now ,  if  we  show  the  control  panel , since  we  have  proportion  as  a  statistic ,

we  can  change  this from  a  Poisson  or  CNU  to  a  Laney .

Again ,  the  limits  have  now  increased .

We  now  realize  we  have  a  stable  process . We  don 't  have  any  points  out  of  control .

This  is  better  characterizing our  scenario ,  our  data  here .

Now ,  let  me  show  you  a  third  example , which  is  a  little  bit  more  complex .

The  picture  in  my  background  here is  actually  a  picture  I  took

from  Acadia  National  Park .

A  couple  of  summers  ago , I  was  working  at  the  Schoodic  Point

and  volunteering  to  study microplastics  in  the  water  up  there .

We  were  taking  samples  of  one  liter of  water  per  week  at  different  locations .

We  would  take  that  water , and  we  would  pour  it  through  a  filter ,

and  then  we  take  the  filter and  look  under  a  microscope

and  physically  count   the  number  of  micro  beads  and  microfibers

that  were  appearing  on  the  filter that  we  poured  the  water  through .

Let 's  analyze  this  as  a  control  chart .

The  principal  investigator   for  this  particular  study

is  trying  to  form  a  nice , complex  model  over  time

to  find  out  whether  or  not the  water  plastics  were  increasing .

But  in  order  to  do  that , you  really  want  to  know

that  you 're  modeling  your  data  correctly

and  whether  or  not we  have  actual  stable  data .

This  is  an  example where we  could  run  a  P  chart ,

so  let 's  try  that .

Being  the  control  chart  developer , I 'm  always  looking  for  more  opportunities

to  model  control  charts .

We  want  to  look  at  the  total  plastics.

For  our  subgroup ,  we  have  week ,

and  for  our   n Trials ,   we  have  total  volume ,

and  then  we  have  different  site  IDs as  a  phase .

Here  we  see  we  have  three  different  points that  we  were  taking  the  measurements  from .

Some  were  better  than  others ,

but  they  all  seemed to  be  really  out  of  control .

He 's  going  back  to  the  drawing  board   and  like ,  "What  should  I  do ?

Should  I  take  more  data ? How  do  I ..."

I  thought ,  "Hmm ,  let 's  see  if  this   really is  characterizing  the  situation ,

the  process  here  very  well. "

Let 's  run  this  again  through  a  dialog ,

and  you  see  there  are  two new  entries  on  the  menu ,

one  for  Laney  P ' and  one  for  Laney  U  control  chart .

Again ,  let 's  look  at  our  total  plastic as  the  Y ,

and  the  total  volume  is  our   n Trials .

Our  week  is  our  subgroup , and  the  site  ID  is  the  phase .

We 've  got  the  same  points  again , but  suddenly,  our  limits  are  much  wider .

We  can  conclude  from  this  that ,  well , we  actually  have  a  pretty  stable  process .

This  is  good  data .

He  can  go  ahead  and  start  to  form his  larger  model  on  this  data .

While  it 's  a  calming  thing , also,  it  makes  a  lot  more  sense .

In  closing ,  I  would  like  to  recommend that  everyone  use  the  Laney  P '  and  U '

control  charts when  monitoring  your  proportion

of  non -conforming  or  defects ,

especially  when  you  see  a  difference between  the  P  and  the  P '  chart .

Thank  you  very  much .