JMP DOE 分析及建模优化在预测外延硅生长速率中的应用 - 应用材料
Speakers :
沈佳苹, 工艺支持工程师,应用材料
The speech topic :
JMP DOE 分析及建模优化在预测外延硅生长速率中的应用
Speech abstract :
在半导体制造中,外延硅被广泛应用于晶圆衬底、pMOS SiGe、nMOS SiP、沟槽填充等应用。外延硅层的生长速率会受到多个步骤、多个工艺参数的影响。为了更高效地建立此种强交互的预测模型,我们需要彻底且全面的DOE评估,设计高度正交的DOE。此项目以外延硅生长速率的历史数据为起点,进行设计评估。对于建立预测模型而言,该历史数据结构功效弱,D 效率低,设计均匀性差,效应相关性和预测方差较高。在建模期间,由于缺乏模型自由度,RSM的逐步算法不稳定,导致模型重复性不佳,最优设计点的置信区间过宽。除此之外,RSM 模型中观察到了两对强相互作用:一对相互作用可能归因于各效应之间的高度相关;而另一对相互作用则与工艺的竞争机制相关。随后利用稳健设计和蒙特卡罗模拟进行公差设计,利用设计空间刻画器用于进行公差分配分析,以模拟未来的技术需求。为了以最小成本改善现有的DOE结构从而优化预测模型,我们未采用全新的DOE,而是利用增强设计方法,通过三种方法改善现有DOE结构:(1) 移除非正交的数据; (2) 默认增强算法; (3) 中心增强算法。通过非常全面的增强设计,JMP建议了最佳四个增强数据点,最终改进了DOE 结构,极大地提高了对于历史数据的利用效率,显著缩短了工艺开发的周期及成本。