レベル:中級
働き方改革が叫ばれる昨今、実験と解析の効率化の重要性が高まっている。JMPによる実験効率化の威力を示すには、実験データを決定的スクリーニング計画(DSD)やカスタム計画で置き換えて見せて実験数を大幅に削減できることを示すと良い。その際の応答データは既存実験データから拾い出す。複数の表に分けられた実験データを見つけた時は、一つのテーブルにまとめて多変量解析を行い、プロファイルで可視化して見せて、OFAT(One Factor at a Time)的方法の落し穴に気づいてもらう。繰り返しのある実験データを平均で分析する考え方に対しては、積み重ね処理や平均・分散による多目的最適化やロバスト最適化の方法があることを示す。
開発現場で実験計画法を使う場合は交互作用の存在を予測できないことが多く、しかも交互作用は決して稀なことではない。DSDは主効果と交互作用(2FI)の交絡や2FI間の交絡がなく、実験数が因子数の2倍程度の少ない数で済む。これは大きな利点である。実際にDSDを使って分かったこと、主効果数+交互作用項数が因子数に近づく時に起きる破綻、拡張計画による解決方法、JMPコミュニティやASQから入手したDSD関連論文の中で実務上重要と思われる点、などについて報告する。
山武ハネウエル(現Azbil)でFA開発部長,理事 研究開発本部長,理事 品質保証推進本部長,アズビル金門参与,などを歴任したのち東林コンサルティングを設立.専門領域は生産データ解析による歩留まり改善や品質改善,市場不良予測・ロバスト設計・最適化設計・実験計画などの統計的問題解決全般,デザインレビュ―・根本原因分析手法(RCA)・ヒューマンエラーの未然防止・工程改善などの現場指導など.著書は『ネットビジネスの本質』 日科技連出版 2001(共著)【テレコム社会科学賞受賞】,『実践ベンチャー企業の成功戦略』 中央経済社 2011(共著),『よくわかる「問題解決」の本』 日刊工業新聞社 2014(単著).主な論文は「生産ラインのヒヤリハットや違和感に関する気づきの発信・受け止めを促進するワークショップの提案」品質管理学会 2016【2016年度 品質技術賞受賞】.主な講演「作業ミスを誘発する組織要因を可視化し改善を促進する仕組みの提案」(Discovery-Japan 2018)
「JMPによる品質問題の解決~製造業の不良解析と信頼性予測~」(Discovery-Japan 2019)