Choose Language Hide Translation Bar

Important JMP Tools for Fermentation Processes - (2023-US-30MP-1444)

The presenters discuss important statistical tools used in monitoring ethanol fermentation using simulated but realistic data. Most, if not all, fermentation processes have long batch cycle times on the order of two to three days. The fermentation process is monitored with measurements made at the start (Prop Stage) and then every eight hours until the final (Drop) stage and ensuing Beer Well stage. Analytic tools and procedures that allow for better and faster decision making and reporting are demonstrated.   

 

 

Hello,  everyone.

I'm  Bill  Worley,

and  along  with  our  special  guest, Nick  Strasser,  from  Bas  Enzymes,

we're  going  to  be  talking  to  you about  some  important  JMP  tools

for  fermentation  processes,

more  specifically, ethanol  production  in  a  batch  system.

I'm  going  to  turn  it  over  to  Nick for  a  quick  introduction,

and  then  I'll  give  a  little  bit  more introduction  on  myself  then,  as  well.

Yes,  hello. Thank  you,  Bill.

Everyone,  my  name  is  Nick  Strasser.

Like  Bill  said,  I  am  a  technical support  specialist  for  BASF  Enzymes.

I've  been  supporting the  fuel  ethanol  industry  in  North  America

for  about  10  years  and  have  found  JMP to  be  an  extremely  valuable  tool

for  analyzing  production and  fermentation  processes

happening  at  ethanol  producers  facilities.

I'm  excited  to  be  here  today  with  Bill and  presenting  this  material.

Hopefully,  if  you  are  an  ethanol  producer, this  material  will  be  directly  applicable.

If  you  are  not, some  of  the  things  we'll  talk  about,

definitely  you  can  apply  it across multiple  different  industries.

I'm  just  excited  to  be  here and  look  forward  to  it.

Thank  you,  Nick.

A  little  bit  more  background  on  me.

My  name  is  Bill  Worley.

I'm  a  principal  systems  engineer  with  JMP.

I've  been  with  JMP  almost  10  years.

Prior  to  that, I  worked  for  Procter  and  Gamble,

and  that's  where  I  say  I  grew  up  on  JMP.

I've  got  a  background  in  chemistry that's  got  a  master's  degree  in  chemistry,

but  I've  been  around.

I've  worked  for  a  few  other  companies over  the  years.

We'll  just  leave  it  at  that and  we'll  go  from  there.

All  right,  Nick.

All  right,  to  get  us  started,

I'd  like  to  talk  about some  general  data  management  fundamentals,

things  that  I  have  found  to  be  valuable in  the  ethanol  production  industry.

First  and  foremost,

the  things  that  you  see  us go  through  today,

they're some  of  the  screenshots  we  take

and  the  demonstrations you'll  see  Bill  go  through,

we  will  be  using the  latest  version  of  JMP,  JMP  17.1.

You  may  be  using a  previous  version  of  JMP,

and  that's  perfectly  fine.

Some  of  what  you  see  here might  be  standard  functions  in  17,

but  you  might  have to  poke  around  a  little,

find  them  somewhere  else  in  16.

If  they're  available, they  might  just  be  in  a  different  spot.

Then  some  of  the  version  17  functions are  completely  new

and  might  not  be  available in  older  versions.

I  also  want  to  quickly  mention  here the  compatibility  with  Excel.

Microsoft  Excel  does  have a  JMP  add- on  toolbar.

If  you  know  how  to  activate a  toolbar  in  Excel,

you  can  go  find  it  there and  have  that  added  to  your  Excel.

For  ethanol  producers,

Excel  is  oftentimes  the  intermediary

between  their  laboratory management  systems

and  their  data  analysis  with  JMP.

Just  some  regular best  management  practices  here.

In  the  ethanol  production  industry, if  you  are  a  batch  fermentation  facility,

keep  a  master  spreadsheet of  all  of  your  batches  in  one  place.

It's  important  that  it's  all  in  one  place,

so that  you  can  leverage the  different  things  that  are  going  on,

either  process- wise,  or  chemical- wise, or  ingredient- wise.

Also  understand  which  data are  important  to  you.

Sometimes  I  talk  to  a  customer and  they're  only   backwards- looking.

They're  collecting  the  data  of  things that  happened

and  not  necessarily  the  inputs or  the  changes  that  got  them  there.

Make  sure  that  you  have  a  spot

to  collect  almost  any  information you  can  think  about

that  might  become  useful looking  backwards  later  on.

I  highly,  highly,  highly  recommend, and  most  producers  do  this  now,

add  a  trial  column  to  your  data.

As  you  collect  your  information,

as  your  batches  mature  and  drop and  your  production  goes  along,

make  sure  you  add  a  column

that  you  can  denote whether  you  are  trying  something  new,

whether  it's  an  enzyme, or  a  chemical,  or  even  a  process.

Maybe  it's  even  a  new  crew.

Maybe  you're  switching  up your  crew  leads  or  something  like  that.

Make  it  a  trial  and  put  it  in  a  column where  you  can  go  back  and  reference  that.

In  a  similar  vein, have  an  upset  column.

Upsets  are   like  trials that  we  didn't  want  to  have  happen.

But  it's  good  to  note that  there's  maybe  an  upset  condition

if  for  no  other  reason  than  a  week  or  two or  month  or  two  later.

This  was  an  out- of- ordinary  thing

and  we  can  maybe  disregard some  of  the  numbers.

All  right.

Like upsets,  data  entry  errors are  going  to  happen,

so  make  sure  that  you  spend  some  time cleaning  your  data.

This  is  actually  a  very  important  step and  it  can  be  rather  time- consuming.

You  have  multiple  options.

My  biggest  point  of  emphasis  would  be, clean  the  data  at  the  source  if  you  can.

Go  all  the  way  back  to  where maybe  a  misentry  was  entered

and  correct  it  there.

That  way,  if  you  ever  have  to  go  back,

you're  not  constantly  cleaning the  same  errors  over  and  over  again.

I  would  say, clean  up  the  source  if  you  can.

Clean  and  JMP  if  you  have  to.

You  have  options  in  JMP that  might  help  you  identify  things

that  need  to  be  cleaned and  options  for  cleaning  them  up.

You  can  use  the  option  to  recode.

You  can  explore  outliers or  missing  values.

Oftentimes,  I  see  data  entry  errors when  I  create  a  control  chart.

Maybe  a  number  that's  normally,  say, between  15  and  20  shows  up  as  170.

Well,  to  me  that's  a  misplaced  decimal.

It's  probably  supposed  to  be  a  17 and  somebody  misplaced  a  decimal

and  we  ended  up  with  170.

You  can  easily  see  that in  a  control  chart.

Find  it  and  correct  it.

Then  I  would  also  say,  always  make  sure you  check  your  data  type  in  JMP.

If  you  have  a  column that's  supposed  to  have  a  numerical  entry

and  somebody  enters  a  character, that's  going  to  become  a  problem  later  on

when  you  want  to  do some  statistical  analysis.

All  right,  one  of  my  favorite  topics  here.

I  really  want  people  to  use  these  terms: common  cause  and  special  cause.

If  you  have  variation  in  your  data,

it's  for  one  of  two  reasons or  maybe  both  put  together.

It's  either  a  common  cause  reason or  a  special  cause  reason.

Common  cause  reasons are  reasons  that  occur  naturally

because  your  equipment,  your  people,

and  your  processes have  certain  limitations.

This  is   what  we  call your  noise  in  your  data.

This  is  just  normal, everyday  little  variations  in  your  data

because  of  the  imperfect  nature of  everything  that  you're  using.

There's  also  a  special  cause  variation.

Special  cause  variation  happens  for, like,  when  things  malfunction.

Maybe  an  environmental  condition  changes,

or  maybe  you  have  a  process or  an  input  change.

A  process  or  input  change can  be  special  cause

that  maybe  you  weren't  expecting to  happen.

But  it  could  also  be  a  trial.

Like  we  said  before,  keep  track  of  that.

Special  cause  variation,

a  process  input  change.

That's  going  to  be very  valuable  information  down  the  road.

Okay,  next  we're  going  to  talk a  little  bit  about  the  data  types

that  JMP  will  recognize.

Continuous,  nominal,  and  ordinal.

Continuous  data  types are  your  number  data  types.

Numbers  anywhere from  negative  infinity  to  infinity

contain  a  decimal  place in  ethanol  production.

A  great  example  of  this would  be  an  HPLC  result,

a  temperature,  a  PH,  a  fermentation  time.

Nominal  data  is  a  type  of  data that's  typically  a  character.

It's  the  name  of  something.

Sometimes  we  use  numbers  to  name  things, and  in  ethanol  plants  we  do  that.

But  it's  like  a  recipe  input.

For  example,  a  yeast  or  GA, a  fermenter  number.

If  you  have  a  trial  condition or  an  upset  condition,

that's  probably  also  going  to  be a  character  expression,

and  it  will  become a  character  type  of  data  or  nominal  data.

Then  we  also  have  ordinal  data.

Ordinal  data  shows  a  certain  order or  progression.

A  great  example  of  this in  batch  fermentation

would  be  a  batch  number.

We  could  have  named  our  batches any  names  we  want,

but  it  really  makes  sense to  our  human  brains  to  use  a  number,

make  it  sequential  so  we  know which  batch  happens  first,

which  batch  happens  later,

so  on  and  so  forth.

Why  does  all  this  matter?

Why  does  the  type  of  data  matter?

Well,  depending  on what  you  want  to  accomplish  with  JMP,

the  program  is  going  to  look for  different  types  of  data  to  match  up.

For  example,  if  you  want  to  create a  bivariate  analysis,

you  will  have  to  have  continuous  data plotted  against  other  continuous  data.

If  you  want  to  do  a  one- way  ANOVA  test, you  will  have  to  have  continuous  data

plotted  against  nominal or  ordinal  types  of  data.

Let's  dig  in  a  little  bit  deeper.

Bill  and  I  are  going  to  assume that  there's  a  certain  background

level  of  knowledge  here

on  importing  data  from  JMP, but  I  just  wanted  to  point

to  some  of  these  things just  to  know  that  you  have  options.

Most  often  what  I'm  doing is  I'm  opening  JMP,

and  then  I  go  to  Open, and  I'm  looking  for  a  file.

Oftentimes,  that's  an  Excel  file.

Make  sure  you  select  all  file  types in  the  drop  down  menu,

and  then  all  of  your  file  types will  show  up.

You  can  find  your  Excel  file,  open  it, and  go  through  the  Import  wizard.

If  you've  already  done  that,

or  if  you  like  to  maybe  just  update a  table  that  already  exists,

you  might  have  Excel  open on  one  half  of  your  screen

and  JMP  open  on  another.

You  might  just  be  copying  and  pasting maybe  new  material  into  an  old  file,

just  updating  it.

In  addition,  if  you're  like  me

and  you're  constantly  going  back to  the  same  Excel  files

where  I'm  keeping  all  of  my  data  organized and  in  one  place,

JMP  will  have  a  source  script.

As  long  as  I  haven't  moved or  renamed  that  source  file,

that  Excel  source  file, I  can  easily  open  my  JMP  file,

click  Source  Script, and  it  will  bring  in  all  the  information

that's  in  that  file, whether  it  be  new  or  old.

You  have  all  sorts  of  other  methods.

There's  the  Excel  toolbar, the  JMP  feature  in  the  Excel  toolbar,

you  can  just  open  a  new  table and  start  dropping  data  in,

and  new  for  JMP  17, there's  something  called  Workflow  Builder.

We're  not  going  to  get  into  all  these.

I  just  want  you  to  know  you  have  options.

To  quickly  point  out  here,

we're  not  going  to  spend a  lot  of  time  on  this.

What  you'll  see  Bill  and  I  using  here

for  cursors  are  the  arrow,  the  selection, the  grabber,  and  the  lasso.

Those  are  the  tools that  we're  going  to  use  most  often.

Other  tools  are  available,

and  if  you  have  questions  about  these, there's  a  lot  of  good  resources  out  there

to  do  some  training  with  JMP  directly or  on  their  website.

You  can  check  those  out.

But  these  are  the  cursor  controls that  we'll  be  using.

Getting  into  the  nitty- gritty  here, and  I'm  going  to  start  analyzing  my  data.

But  before  I  do  that, one  really  important  question.

Because  JMP  is  going  to  assume that  your  data  are  normally  distributed,

it  might  be  good  practice, or  it  is  good  practice,

for  you  to  know  ahead  of  time whether  a  certain  type  of  data  should  be,

is  expected  to  be,  is, or  isn't  normally  distributed.

On  the  left  side  of  the  screen  here,

you'll  see  your  typical  normal bell  curve  distribution.

These  data  are  basically normally  distributed.

JMP  is  going  to  assume all  of  your  data  is  like  this.

On  the  right  hand  side  of  my  screen,

I  see  some  data that's  not  normally  distributed,

it's  skewed  a  little  bit.

Just  from  an   ethanol  production fermentation  process,

my  total  sugar  at  drop,

I  would  never  expect to  be  normally  distributed.

I  would  expect  it when  there's  upset  conditions,

that  upset  only  draws  my  sugars one  direction  and  never  the  other.

This  is  perfectly  normal.

But  if  I'm  going  to  get into  some  more  advanced  data  analysis,

that's  going  to  be  something  good  for  me to  keep  in  mind.

Once  you've  done  it and you know, you  probably  don't  have  to  do  it  again.

All  right,  let's  get  into what  I  would  consider

the  bread  and  butter.

The  main  feature  in  JMP  that  I  use when  I'm  looking  at  my  process

and  want  to  know  if  it's  in  control, is  a  control  chart.

Process  control  charts, as  we  talked  about  before,

can  show  you  control, can  show  possible  outliers,

and  they  can  be  used to  very  quickly  get  a  visual

and  mathematical  representation  of  means

for  different  phases  of  something like  perhaps  a  trial

or  maybe  a  month- to- month  comparison on  how  my  operation  is  going.

The  basic  control  chart  output is  going  to  look  like  this.

What  you  see  here,  I  would  say, is  probably...

Most  of  this  is  that  type  of  data

that  would  be  considered within  my  normal  noise.

I  don't  see  anything  here that  really  screams  at  me  like,

"This  is  an  outlier, this  is  a  data  entry  error,"

or  anything  like  that.

Your  basic  control  chart  output will  look  like  this.

If  you  want  to  dress  it  up  a  little  bit on  the  left  side  there,

you  can  select  for  zones  and  zone  shades.

This  is  going  to  shade  your  zones

that  are 1 ,  2,  and  3  standard  deviations from  your  average.

Again,  this  is  developed  by or  used  a  lot  in  the  automotive  industry

where  you're  doing  some  Six  Sigma improvement  projects.

This  type  of  visual  is  really  useful

for  any  kind  of  Six  Sigma  projects you  have  going  on.

In  addition  to  the  zones  and  shadings, we  can  also  use  some  rules

that  have  been  developed by  the  industries  to  say,

"Is  my  process  in  control or  out  of  control?"

Here  we  have  an  example of  a  violation  of  a  warning.

I  believe,  Bill, when  you  and  I  talked  about  this,

it  had  something  to  do with  the  two  data  points

being  a  certain  width  apart, a  certain  too  many  standard  deviations.

I  can't  recall  if  it  was  2  or  3.

But  here  we  have  one  data  point that  was  quite  a  bit  higher

and  quite  a  bit  different than  the  previous  data  point,

and  it  threw  up  a  warning.

Aside  from  control  charts  comparing  means, it's  another  very  useful  tool.

In  the  ethanol  production  industry, it  is  used  all  of  the  time.

When  you  have  a  trial  going  on,

something  that  you  wanted  to  know, "Is  this  process  any  different?

Is  it  statistically  significant, and to  what  degree?"

We're  going  to  take  a  look at  comparing  means,

and  it's  going  to  be  used  to  look at  a  continuous  set  of  data

against  ordinal  or  nominal  types  of  data.

Again,  we  talked about  that  process  upset  condition

or  a  trial  condition being  a  nominal  type  of  data.

Comparing  means  analysis.

First  and  foremost,  take  a  look.

Is  this  right  for  me?

It  is  appropriate  to  use when  you  have  large  data  sets.

My  rule  of  thumb  is, 30  data  points  or  more.

If  you  have  few  outliers, outliers  can  really  pull  your  average.

If  it's  time  constricted or  time  restricted  to  a  local

or  small  amount  of  time.

In  that  time,  all  other  conditions

have  been  controlled to  the  best  of  your  ability,

it  would  not  be  appropriate with  small  data  sets

where  outliers  can  skew the  mean  calculation  pretty  drastically.

I  wouldn't  use  this over  a  broad  range  of  time,

say,  comparing  now  to  three  years  ago,

where  conditions, an  unknown  number  of  conditions,

would  probably  be  different between  now  and  three  years  ago.

If  you're  continuously  improving,

you're  going  to  want  to  keep this  kind  of  analysis

to  a  certain  time  restriction  as  well.

How  do  we  get  into  this?

We  want  to  do  a  fit,  X  by  Y.

In  the  example  you're  going  to  see  here, we're  going  to  use  phase.

This  would  be  a  trial  phase as  our  X- factor  and  ethanol  to  liq  solids,

or  how  much  ethanol  are  we  getting

for  the  amount  of  corn  we're  putting  in as  the  Y- response?

The  example  that  is  kicked  out  to  us  shows that in  this  particular  example,

looking  at  the  diamonds  and  circles

and  then  looking  down at  the  connecting  letters  report.

This  is  an  example.

First  of  all,  by  default,

JMP  is  going  to  assign a  95%  confidence  interval.

Here  we  see  that  the  mean  differences shown  by  the  connecting  letters  report,

they  have  two  different  letters.

For  each  phase  of  this  trial, there  are  no  overlapping  letters.

We've  got  a  baseline and  then  we've  got  a  trial.

What  JMP  is  telling  us  here  is  that

these  averages  are  statistically different  with  95%  confidence.

Looking  at   a  little  bit more  complicated  situation,

you  might  find  something  like  this.

I  love  this  example.

It  already  violates  what  I  said about  large  data  sets.

We've  got  like  4  or  5  data  points in  the  baseline

and  then  just  a  few  points for  a  yeast  trial,

and  then  a  couple  more  baseline  points.

What  JMP  is  telling  us  here,

if  we  looked  at the  connecting  letters  report,

that  the  baseline  and  the  yeast  trial are  significantly  different,

but  it  also  says  that  baseline  two

is  connected  to  both the  yeast  trial  and  the  baseline

with  no  statistically significant  difference.

Maybe.

I'm  going  to  eyeball  that. Do  this  pass  the  eyeball  check?

Boy,  baseline  and  baseline  two look  really  similar.

I'm  going  to  dig  a  little  bit  deeper.

If  I  look  down at  my  order  differences  report,

I  can  see  that  my  yeast  and  baseline did  pass  a  95%  confidence  level

for  being  statistically  different.

But  if  I  look  at  yeast  and  baseline  two, it  just  barely,  barely  missed  the  cut  off.

If  I  were  to  go  back and  assign  a  90%  confidence,

then  I  would  get  a  result that  I  would  expect.

That  my  baseline  and  baseline  two are  basically  the  same

and  that  the  yeast  trial  was  different

with  a  90%   confidence.

Okay. Thanks,  Nick.

I'm  going  to   dive  in  a  little  deeper.

Actually,  we'll  show  you  a  few  things, few  slides,  and  then  we'll  get  into  JMP.

But  we're  going  to  talk  about  bivariate and  multivariate  analysis  first.

This  is  for  use  with  continuous  data against  other  sets  of  continuous  data.

This  is  a  bivariate  example where  we're  looking  at  ethanol  liq  solids,

versus  another  term  called  liq  solids.

We  can  see  that  by  this  line  here that  there's  really  no  correlation,

especially  if  you  look at  the  R  squared  down  here.

This  has  a  very  small  R  square,

which  indicates  that  there's  no correlation  between  these  two  variables.

But  it  is  pointing  at  that  there  is

a  general  decline in  the  fermentation  yield

as  solids  are  increased,

or  that  the  widest  variation was  noticed  around  this  33%  line.

We  can  further  play  around  with  that and  add  some  colors

and  see  where  we  might  see some  differences  there  as  well.

The  next  step  in  this  would  be  to  say,

"Okay,  we're  looking at  a  multivariate  example."

We're  looking  at  a  bunch  of  different process  parameters  and  saying,

"Okay,  are  they  correlated  in  any  way?"

We've  got  these  numbers  that  tell  us

that  we  can  look  at  the  lines and  see  which  way  they  slope.

We  can  look  over  here  where  we've  got the  correlation  coefficients

matched  up  with  the  particular  squares.

Those  numbers  are  telling  us

whether  something might  be  correlated  or  not.

The  redder  it  is,

the  higher  the  correlation in  a  positive  direction,

and  the  bluer  it  is,

the  more  it's  correlated in  a  negative  direction.

One  important  note  here  is  that correlation  does  not  imply  causation.

That's  a  very  important  thing  to  remember.

Also,  we're  going  to  look at  Graph  Builder.

This  is  maybe  more  of  an  artistic than  analytical  type  of  analysis,

but  it  allows  you  to  look at  all  kinds  of  different  properties

and  you  can  play  around  with  it.

You  can  remove  and  hide  items with  column  switcher  and  a  data  filter.

You  can  change  access  label  orientation.

You  can  modify  spacing.

There's  all  kinds  of  different  things you  can  do.

This  is  an  example of  how  you  can  do  that.

This  is  a  kinetics  graph for  showing  by  phase

what  the  ethanol  and  sugar are  doing  over  time.

We've  got  those  that  we  can  play  with

and  I'll  show  you  how  to  make  one  of  those in  a  minute  or  so.

Then  here's  another  instance where  we're  looking  at

by  batch  and  by  day.

We've  got  ethanol  and  sugar.

We've  got  our  sample  age up  on  the  upper  grouping  axis  here,

and  then  we  have  batch  number  down  here on  the  lower  x- axis.

One  other  tool  that  I  want  to  talk  about

before  I  get  into  JMP  itself is  the  advanced  control  charting,

which  we  call model  driven  multivariate  control  charts.

This  is  especially  useful when  you're  looking  for  processes

that  appear  to  be  in  control,

but  they  still  have  batches that  are  failing.

You  might  have all  of  your  individual  control  charts

are  showing  that  everything is  in  control,

but  you're  still  getting  batches that  fail.

This  model  driven multivariate  control  chart

will  help  you  better  understand  that.

You  can  see  this  is  just some  of  the  output

that  you'll  get  there.

With  that,  I  am  actually  going to  step  out  of  PowerPoint  and  do  this.

All  right.

I  should  still  be  sharing.

I've  got  my  JMP  window  up.

L et's  go  ahead  and  start  off with  making  these  graphs.

I've  got  the  data  in  a  stack  format for  right  now.

This  is  that  graph that  I  showed  you  before .

This  is  one  of  them and  I'm  going  to  show  you  how  to  make  it.

It's  real  quick.

Let's  just  go  to  Gaph  Bilder

and  I'm  going  to  pull  this  one out  of  the  way

so  it  doesn't  get  in  our  vision  here.

We're  going  to  pull  in  phase and  you  can  see  things  light  up,

these  drop  zones  light  up as  I  pulled  the  data  in  or  the  column  in,

but  I  want  to  group  that .

Then  I  want  to  go  ethanol  here and  sugar  here .

We've  got  the  two  and  that's  actually not  the  way  I  want  that  to  show  up,

so we're  going  to  redo  that.

I'm  going  to  do  an  Undo  here and  start  over.

Let's  do  sugar  and  ethanol  first.

We'll  pull  those  in  as  one.

There  we  go.

Then  we're  going  to  pull  in  sample  age and  now  we'll  pull  in  that  phase

and  now  we've  got  that and  we're  going  to  add  a  line  to  this.

We're  going  to  pull  in  the  smoother, and  that  adds  those,  and  we'll  hit  Done.

That's  that  graph.

That's  basically  the  kinetics as  ethanol  and  sugar  go.

Ethanol  goes  up and  sugar  goes  down  over  time.

We  can  see  that  there  might  be some  slight  differences

in  the  two  baseline  and  trial, but  we'd  have  to  dig  deeper

to  really  get  more  into  that.

That's  that  one  graph.

I  think  I'll  just  move  on

to  the  model  driven multivariate  control  chart.

That's  a  good  idea  on  how  to  build  that, use  that  Graph  Builder.

But  let's  look  at  the  model  driven multivariate  control  chart.

Again,  I  have  these  things  pulled  up.

Let's  go  to  Analyze and  let's  go  to  Multivariate  Method

or Q uality  and  Process Model D riven M ultivariate  Control  Charts.

Actually,  this  isn't  the  right  table, so  let  me  pull  up  my  other  table.

There  we  go.

Click  this  off.

We'll  go  to  Analyze,

Quality  and  Process, Model D riven M ultivariate  Control  Charts.

We're  going  to  just  pull  in a  group  of  different  processes.

I'm  just  going  to  pull  all  these  in.

We're  going  to  try  and  see where  we  see  differences.

We  could  put  a  time  ID  in  here,

but  we're  just  going  to  go  ahead and  say O kay.

Now  we're  seeing  that  we're  getting some  batches.

We're  looking at  all  those  components  together,

all  those  process  steps  together.

Now  we're  showing  that  we've  got some  things  that  are  out  of  control,

so I'm  going  to  highlight  these out  of  control  batches.

This  is  all  done with  principal  components.

It's  saying  it  takes eight  principal  components

to  explain  at  least  85% of  the  variation  that  we're  seeing.

Let's  highlight  those, show  their  contribution  plots.

Now  we  can  see  that  we're  getting  an  idea of  what  are  the  issues  here.

Let's  sort  the  bars  so  that  we  have  ones where  we're  getting  a  lot  more  variation

seen  in  some  of  the  samples  versus  others.

That  these  others  and  then  we've  got one  that  says  it's  out  of  control.

We  can  look  at  that  individually  and  say, "Oh,  wow,  yeah,  we've  got  a  point.

At  least  one  point  that's  out  of  control

for  that  individual  batch  there, or  that  sample."

Sample  23.

One  other  thing  you  can  do  here,  too,  is, let's  add  a  monitored  process,

let's  go  to  the  score  plot.

Now  we  can  see  that  down  here,

we've  got  the  batches that  we're  looking  at

and  then  we've  got  the  individual  points.

Again,  we  can  look at  their  individual  plots,

but  let's  make  that  group  A.

Then  we're  going  to  go  back  up  here,

take  those  off  and  highlight this  other  grouping  here.

Make  that  group  B.

I  don't  know  if  you  can  see in  the  background  there

that's  highlighting  in  the  data  table.

That's  a  nice  way  of  selecting  the  data for  you  to  show  that.

Then  we've  got   the  bars  here.

Now  we've  got  an  idea that  this  prop  send  cell  count

is  one  of  the  bigger  drivers as  to  why  we're  seeing  differences

between  batches  that  are  out  of  control versus  in  control.

That's  just  a  nice  tool to  try  and  work  with  there.

I'm  going  to  get  rid  of  this  for  now

and  I'm  going  to  go  back to  the  PowerPoint.

Get  that  right.

Let's  step  up  again.

Part  of  another  tool  within  JMP,

and  this  is  getting  deeper into  the  power  of  JMP,

is  something  called Functional  Data  Explorer  in  JMP.

Let  me  get  rid  of  this.

Then  this  allows  you  to  analyze  data that  is  captured  over  time.

You  can  compare  curves  to  a  standard or  golden  curve.

With  chemometric  data, you  can  preprocess  and  analyze  that  data,

and  then  you  can  use  this Functional  Data  Explorer

to  do  a  qualitative  review of  the  curve  data.

One  of  the  things  that  might  be  used in  the  ethanol  industry,

one  of  the  tools  is  something  called near- infrared  spectroscopy,

and  that's  used  to  measure inbound  corn  composition.

This  Functional  Data  Explorer will  allow  you  to  do  that.

Some  of  the  other  things you  might  want  to  look  at

are  like  spectral  data,  HPLC, or  Chromatographic  data,  mass  spec  data.

But  the  JMP  Pro  features in  Functional  Data  Explorer

allow  you  to  do  the  preprocessing

and  analyzing  of  spectral  data or  functional  data.

It's  pretty  straightforward.

Then,  just  so  everybody  knows what  I'm  talking  about  here,

functional  data  is  any  data

that  unfolds  or  develops over  some  sort  of  continuum.

These  continuums are  listed  down  here  below,

and  time  is  one  of  those  continuums.

This  is  an  example  of  visualizing

the  functional  data that  we're  talking  about.

This  is  some  HPLC  data,  this  is  NMR  data, and  then  this  is  near- IR  spectral  data.

How  this  is  used  for,  or  how  this  is  used in  the  ethanol  industry

is  to  do  something  like  this.

We  looked  at  that  sugar and  ethanol  data  before,

but  we  really  couldn't  compare batch  to  batch,  right?

Not  that  well.

We  couldn't  get any  quantitative  view  of  that.

Well,  with  Functional  Data  Explorer, this  allows  you  to  look  at  these  by  batch,

and  you  can  fit  a  model  to  them and  see  where  things  fall  out.

We'll  show  you  that  in  just  a  second.

Then  this  is  just  an  output from  some  near- IR  data

where  we've  looked  at  60  batches of  gasoline  looking  for  the  octane  rating

and  then  the  output that  we  get  out  of  that.

Now  I'm  going  to  step  out  here and  go  back  to  our  data  sets  here

and  get  rid  of  this  one  and  pull  back  up our  stack  data.

Let's  go  to  Analyze.

This  is  Specialized  Modeling.

Functional  Data  Explorer.

We're  going  to  do  this in  the  stack  format,

and  we're  going  to  look  at  ethanol and  sugar.

That's  our  Y  output.

We're  going  to  use  a  time  this  time, but  we're  going  to  use  continuous  time.

We're  not  going  to  use the  categorical  time.

We  need  the  ID  function.

Then  we  can  put  Phase  and  let's  say,

Amylase  Type  in  there as  some S upplemental  variables.

Say  Okay.

Now  we're  going  to  fit  this  data.

I'm  going  to  do  a  JMP  tip  here.

I'm  going  to  hold  down  my  Ctrl  key.

I'm  going  to  go  to  the  red  hotspot and  go  to  Models  and  say  Wavelengths.

This  will  fit  both  models at  the  same  time.

One  of  the  things  you're  going  to  find  out

is  that  wavelengths  need  a  grid and  a  needling  space  grid.

We're  going  to  say  Okay  there, and  say  Okay  for  the  next  one.

Now  we  have  models fit  for  both  the  ethanol  and  the  sugar.

This  is  ethanol,  this  is  the  sugar  data.

If  we  come  down  here  a  little  bit,

we  can  see  that  each  one  of  the  batches that  we  have

are   using  these  wavelength  type  functions.

We  can  go  a  little  deeper, we  can  look  at  the  fit  here

where  we  have  multiple  shape  functions and  we  can  say,

"Okay,  why  are  these  different?"

If  we  hover  over  them,  we  can  look  at  that and  we  can  plot  that  out.

But  we  can  also  come  down  here and  play  around  with  a  function  here

where  we  can  look at  the  functional  principal  components

and  say,  "Okay,  how  did  these  things change  over  time?"

This  gives  us  a  pretty  good  indication

that  as  we  increase these  functional  principal  components,

but  we  don't  know what  those  parameters  are,

things  are  going  to  change  with  the  output or  the  consumption  of  the  sugar.

We  get  a  qualitative  view of  what's  going  on  there.

Then  last  but  not  least,

with  all  these  things, you're  going  to  want  to  share  this  data.

I'm  going  to  go  back to  PowerPoint  one  more  time  here.

This  is  an  image  of  a  JMP  Live  output

where  we've  looked at  a  couple  of  the  graphs

where  we've  got  ethanol  and  sugar comparing  over  time  by  batch  number

and  then  by  sample  age  here,

comparing  both  the  baseline and  trials  that  way.

That's  a  nice  way  to  look  at  that.

Let  me  show  you  this, in  a  live  JMP  Live  image,

take  me  a  second  to  get  that.

Pull  that  in.

This  is  a  live  JMP  Live  image of  those  graphs.

This  allows  anyone  that  has  JMP  Live to  investigate  this  data.

This  is  especially  important when  you're  trying  to  share  data

with  your  management  or  your  team.

If  you  have  upsets  in  your  analyzes or  in  the  process,

this  is  a  great  way  to  share  that.

You'll  get  warnings about  things  that  are  out  of  control,

if  you're  looking  at  control  charts.

I've  got  other  dashboards or  other  images  that  I  can  look  at.

We  can  go  over  here  and  look  at, let's  see,  chemical  production.

Then  I  can  look  at  the  data  this  way where  it's  a  model  that  we  can  say,

"Okay,  how  are  things  reacting  over  time?"

Then  this  is  something  called a  prediction  profiler  where  we  can  say,

"Okay,  what  happens  to  the  model when  I  change  reactors?"

Or  in  this  case,  trials or  whatever  it  happens  to  be

in  the  ethanol  world?

With  that, I  believe  this  is  all  we've  got.

We'll  say  thank  you, and  we'll  go  from  there.

Nick,  any  last  words?

Yeah,  I  will  just  say  again,  Bill, thank  you  to  you  and  the  JMP  team.

For  those  users  out  there, if  you're  an  ethanol  producer

or  not  an  Ethanol  producer,

you  probably  have your  or  3  or 4  analysis,

what  I  would  call  the  bread  and  butter of  what  it  is  you're  doing.

You  do  it  over,  and  over,  and  over  again.

Don't  be  afraid  to  reach  out. Learn  something  new.

Learn  a  new  feature  about  those  things that  you  use  often.

But  also,  don't  be  afraid to  grow  a  little  bit

on  the  depth  of  your  understanding of  what  JMP  can  do.

We  are  so  data- rich  and  information  poor.

JMP  can  help  you  take  that  data, turn  it  into  real  actionable  information,

and  it  tells  a  great  story,

and  it  can  really  help an  organization  out.

Reach  out,  find  Bill, find  somebody  at  JMP,  find  myself.

Always  happy  to help.

Thanks  again.

Thanks,  Nick.

Just  as  a  word,

Nick  and  I  had  done  a  presentation earlier  this  year

based  on  this  same  data  set.

If  you're  interested,  reach  out  to  us.

We  can  get  those  links  for  you so  you  can  watch  those  presentations.

It  was  a  couple  of  days.

We  did  it  over  a  couple  of  days.

A  little  more  in  depth

than  what  you're  seeing  today, but  thank  you.

Author