Choose Language Hide Translation Bar

DoE-Assisted Chromatography Method Development for the Analysis Biopharmaceuticals (2023-EU-30MP-1206)

Cation-exchange chromatography (CEX) is the industry gold standard for the analysis of biopharmaceutical charge variants. However, the development of CEX methods in a time and resource-efficient manner constitutes a bottleneck in product characterization. CEX separations are complex and governed by multiple factors. Several scientific publications have proven the successful application of design-of-experiment (DoE) in chromatography method development. Nevertheless, performing DoEs with a large number of factors may be challenging, time-consuming, and expensive. This work illustrates the use of a split-DoE approach to aid the development of a CEX method for the analysis of the charge variants profile of a mAb candidate. Analytical method development was intended to provide a high-throughput (HT) CEX method to support charge variants analysis with minimal sample and time requirements. The split-DoE approach is based on fundamental knowledge of the CEX separation mechanism and aims to reduce the number of experimental runs whilst exploring a wide experimental space. Regression modeling was used to study the effect of both individual process parameters and their interactions on the separation efficiency to ultimately identify the optimal method conditions. This study provides an efficient workflow for leveraging the development of CEX methods.

 

 

Hello,  everyone.  Thank  you  for  joining  my  talk.  I  am  Giulia  Lambiase,  I'm  a  Senior  Scientist  at  AstraZeneca.  I  work  in   biopharmaceutical  development  in  the  analytical  science  team.  Today,  I  want  to  talk  to you  about  the  use  of  DoE  for  the  development  of  analytical  characterization  methods,  most  especially  chromatography  methods.

In  today's  talk,  I'm  going  to  talk  about  therapeutic  proteins,  what  they  are,  and  why  they  are  challenging  for  analytical  testing,  and  introduce  you  to  the  use  of  design  of  experiment  for  analytical  method  development  and  the  application  of  DoE  for  the  development  of  charge  variance  method,  specifically cation  exchange  chromatography  method.

To  start  off,  protein  therapeutics  are  inherently  very  complex  due  to  their  larger  size  and  the  presence  of  the post- translational  modification,  and  also  chemical  modifications  that  can  the  protein  undergo  through  during  the  processes  of  expression  in  cells,  purification,  and  storage.

Monoclonal  antibodies  dominate  the  biopharmaceutical  market,  representing  about  70 %  of  the   total  sales  of  biopharmaceutical  products.  However,  recently,  there  is  a  push  for  new  products,  next  generation  biopharmaceuticals,  which  are  bispecific  antibodies,  antibody  fragment,  fusion  proteins,  and  many  other  formats.  All  of  them  come  with  unique  challenges  due  to  their  complex  structure  and  presence  of  higher  order  structure,  glyco forms,  charge  variants,  the  sulfate  bonds,  oxidized  deamidated  species,  isomerization,  aggregation,  fragmentation.

A ll  of  these  modification,  chemical  process  [inaudible 00:02:37]   modification,  can  impact  on  potency,  safety,  quality  of  the  final  drug  product.  This  is  why  thorough  analytical  characterization  and  analytical  testing  throughout  all  the  stages  of  product  life  cycle  is  key  to  meet  regulatory  standards,  to  be  enabled  to  deliver  a  product  that  meets  regulatory  quality  profile.

We  use  a  plethora  of  analytical  techniques  for  analyzing  proteins,  and  these  are  based  mostly  on  chromatography  methods,  electrophoretic  methods,  and  [inaudible 00:03:25] .  Due  to  the  inherent  structural  complexity  of  proteins,  analytical  method  development  can  be  quite  challenging.

In  today's  talk,  I'm  going  to  specifically  talk  about  chromatography  methods  and  the  use  of  design  of  experiment  to  help  the  development  of  chromatography  separation.  Chromatography  method  can  be  quite  complex,  especially  if  you  have  a  complex  analyte  like  a  protein.  This  is  because  the  separation  depends  on  the  interplay  of  several  variables  such  as  mobile  phase  composition,  buffer  pH,  flow  rate,  column  chemistry,  temperature,  the  type  of  detector  that  you  decide  to  use  for  the  analysis.  All  of  these  parameters  need  to  be  fine- tuned  and  controlled  during  the  separation  process  in  order  to  achieve  the  desired  separation.  DoE  can  be  very  useful  versus   one  factor  at  a  time  approach.

One  factor  at  a  time  approach  involved  the  variation  of  one  parameter  at  a  time,  maintaining  the  other  constant.  This  may  lead  to  a  large  experimental  run,  lack  of  information  because  there's   lack  of  investigation  on  factors  interactions.  Lack  of  information  also  leads  to  additional  experiments  during  method  validation,  which  may  lengthen  even  more  the  method  development  process  and  finally  retard  the  overall  product  development.

DoE,  in  comparison  to  one  factor  at  a  time  approaches,  DoE  enables  the  variation  of  multiple  parameters  at  a  time.  This  allow,  with  a  reduced  number  of  experiments,  to  investigate  a  large  number  of  factors,  including  the  interactions  between  them.  Also  the  development  of  mathematical  models  that  allow  the  assessment  of  relevance  and  the  statistical  significance  to  facilitate  all  the  steps  required  during  method  validation.  DoE  enables  really  to  investigate  a  wide  design  space  with  less  resources,  so  in  a  more  efficient  way.  In  fact,  I  like  saying  DoE  enables  faster,  cheaper,  and  smarter  experiments to  deliver  stronger  and  better  analytical  methods.

In today's  talk,  I'm  going  to  talk  you  through  a  split  DoE  approach  for  the  development  of  a  cation  exchange  chromatography  method.  Cation  exchange  chromatography  is  used  for  the  analysis  of  charge  variants.  Specifically,  if  you  see  here  on  the  left  hand  side  of  this  slide,  you  can  see  a  chromatogram  of  a  protein  where  you  can  see  some  acidic  species  here  on  the  left,  [inaudible 00:07:17]   on  the  left  of  a  main  species  peak,  and  some  basic  species  peak.

All  these  acidic  basic  species   can  be  formed  due  to  the  presence  of  chemical  modification  that  can  lead  to  superficial  charge  distribution  variation  in  the  protein.   Cation  exchange  chromatography  methods  are  quite  complex  chromatography  methods  because  the  separation  efficiency  is  affected  by  a  number  of  factors  and  quite  sensitive  to  small  changes  of  these  factors  such  as  column  chemistry,  mobile  phase  pH,  temperature,  flow  rate,  content  of  salt,  time  of  the  separation.

In  this  approach,  I'm  going  to  talk  you  through  an  efficient  way  to  develop   cation  exchange  chromatography  method  using  DoE.  If  you  are  familiar  with  DoE,  you  may  know  that  often  requires  a  sequential  approach.  In  this  experiment,  I  performed  a  main  effects  screening  design  for  enabling  the  selection  of  the  best  column  chemistry  and  the  mobile  phase  pH  for  the  charge  variance  separation  of  this specific  mAb  molecule.

During  the  second  DoE,  I  use  response  surface  methodology,  particularly  a  central  composite  design  DoE,  to  optimize  the  chromatography  separation  by  changing  the  flow  rate  and  [inaudible 00:09:36] .  Let's  take  into  more  detail  in  the  first  DoE  experiment.  This  was  a  main  effects  screening  design  where  I  screened  four  column  chemistry  bought  by  four  different  providers,  Agilent,   Sepax, Phenomenex,  and  Waters, and  I  screened  a  range  of  pH  from  5.5  to  6.5.

My  response  was  the  experimental  peak  capacity,  which  is  a  parameter  that  tells  you  the  efficiency  of  a  chromatographic  separation,  precisely  the  number  of  peaks  that  can  be  separated  within  the  chromatogram,  the  chromatography  time  that  you  set.  Other  parameters  such  as  concentration  of  buffer,  concentration  of  salt at  the  start  of  the  chromatography  gradient,  flow  rate,  gradient  time,  shape,  temperature,  injection  volume,  concentration,  and  the  UV  absorbance  were  kept  constant.

These  are  the  results  for  the  first  DoE.  On  the  left  hand  side,  you  can  see  the  four  different  column  results.  You  can  see  how  the  experimental  peak  capacity  changes versus  the  pH  change  in  the  mobile  phase  in  all  the  four  different  columns.  You  can  see  that  we  aim  to  have  high  experimental  peak  capacity  values.  You  can  see  that  the  Phenomenex  column  performed  best.

In  all  of  these  three  columns,  we  can  see  that  pH  of  6.5  enables  greater  experimental  peak  capacities.  But  the  Phenomenex   column  allowed  for  better  separation  results.  It  is   also  visible  on  the  right  hand  side  of  this  slide  in  the  panel  A.  You  can  see  at  pH  6.5,  how  the  separation  differs  when  using  different  chromatography  columns.

We  have   Agilent Waters Phenomenex ,  and  Sepax .  Definitely,  the  separation  of  the  charge  variants  using  the   Phenomenex   column  is  much  better  than  in  the  others  because  these  acidic  peaks  are  very  well  separated  as  well  as  these  basic  species  here  from  the  main  product  peak.

Panel  B,  we  have  isolated  only  the  results  of  the   Phenomenex   column.  How  the  chromatography  separation  was  that  with  the  mobile  phase  or  with  pH  5.5, 6.0, and  6.5.  We  can  see  how  the  separation  improves  with  the  increase   in pH.  Obviously,  the  mobile  phase  pH  is  dictated  by  the  intrinsic  molecule  pI.  We  could  only  investigate  this  range.  Otherwise,  the  molecule  would  have  struggled  to  find  its  own  column.

Based  on  our  fundamental  knowledge  of  chromatography  separation  with  cation  exchange  columns,  we  decided  that  this  parameter,  so  this   Phenomenex   column  and  pH  of  6.5,  were  optimal  to  carry  on  development.  We  carried  on  with  the  second  DoE  using  a  central  composite  design.

Central  composite  design  is  a  type  of  DoE  falling  within  the  umbrella  of  response  surface  methodology,  which  is  used  for  optimized  conditions  for investigating  the  presence  of  curvature,  for  instance,  and  extrapolate  optimal  values.  In  this  case,  we  use  our   Phenomenex   column  and  mobile  phase  pH  of  6.5, and  started  to  play  with  other  parameters  such  as  buffer  concentration,  concentration  of  the  salt  at  the  start  of  the  gradient,  and  flow  rate  to  investigate  optimal  conditions.

Central  composite  design  enabled  to  very  efficiently,  with  a  few  number  of  runs,  to  identify  optimal  separation  conditions,  optimal  method  conditions.  In  fact,  at  the  very  end  of  the  split  DoE  approach,  we  could  say  that  with  the  investigation  of  four  column,  mobile  phase,  pH  range,  salt  composition,  gradient  flow  rate.  With  only  27  experimental  runs,  we  could  optimize  a  method  for  a monoclonal  antibody.  This  method  is  very  useful  because  it  is  now  used  as  a  quick,  high  throughput  screening  experiment.   In  a  quick,  high  throughput  analytical  method  for  screening  differences  in  the  charge  variance  profile  of  these  specific  molecules  expressed  in  different  conditions  and  compare  it  to  a  standard.

You  can  see  here  that  the  blue  line  is  our  reference  standard  and  the  red  line  is  a  stress  material  of  the  same  molecule.  You  can  see  how  the  charge  variance  profile  changed  as  a  consequence  of  the  stress  condition  applied  to  this  molecule.  This  was  achieved  thanks  to  this  analytical  method  which  was   developed  and  optimized  with  a  DoE  approach.

We  also  decided  to  implement  this  DoE  approach  as  a  platform  workflow  for  analytical  method  development  for  new  products,  new  bio pharmaceuticals, and  we  screened  a  number  of  products.  For  all  of  them,  we  applied  first  the  first  main  effect  screen  design,  and  we  identified  the  best  column  and  mobile  phase  pH  to  use.   Secondly,  we  applied  the  central  composite  design  to  optimize  the  separation.

Now,  we  have  identified  a  platform  column  and  a  mobile  phase  composition  for  this  class  of  therapeutics.  When  new  molecules  comes  into  the  pipeline,  we  can  very  quickly,  just  by   using  a  central  composite  design,  which  involves  actually  just  12  runs,  optimize  the  chromatography  profile  and  deliver  an  optimal  cation  exchange  method  for  a  specific  product.

The   key  take- home  messages  from  my  talk  today  is  that   DoE  system  method  development  followed  by  appropriate  statistical  analysis  enables  to  plan  experiment  based  on  time,  cost,  and  analytical  resources  available  very  efficiently,  and  schedule  the  execution  of  experiments  with  adequate  sample  type  and  size  to  extrapolate  the  maximum  amount  of  information  from  our  chemical  data and  efficiently  address  the  challenges  and  goals  of  the  intended  research.

It  definitely  saves  time  and  cost  for  experiment  execution  in  comparison  to  one  factor  at  a  time  approaches.  Most  especially,  it  allows  the  complexity  of  analytical  method  development,  but  still  interrogating  several  factor  at  a  time  and  studying  the  effect  of  both  individual  method  parameters  and  the  interaction  on  the  dependent  variable.

With  today's  talk,  I  hope  I  inspired  you   to  apply  more  DoE  in  your  experiments.   Thank  you  very  much,  everyone,  for  your  attention.  If  you  have  any  questions,  feel  free  to  reach  out  to  me.  Thank  you.

Presenter