JMP Topics and Capabilities for Getting Beyond Spreadsheet Analytics with Visual Data Discovery Move from Data to Decision – Faster!

Tom Donnelly, PhD, CAP Principal Systems Engineer Defense & Aerospace Team JMP Statistical Discovery LLC

Desk 919-531-1380 Mobile 302-489-9291 <u>www.jmp.com/fedgov</u> tom.donnelly@jmp.com

Exploratory Data Analysis

DYNAMIC LINKING AMONG ALL GRAPHS AND DATA TABLE ALLOWS SELECTION OF SUSPICIOUS DATA IN ONE GRAPH AND SEE POSSIBLE CORRELATIONS IN ALL!

Exploratory Data Analysis

DYNAMIC LINKING AMONG ALL GRAPHS AND DATA TABLE ALLOWS SELECTION OF SUSPICIOUS DATA IN ONE GRAPH AND SEE POSSIBLE CORRELATIONS IN ALL!

Distributions

Highly Interactive Graph Builder

DRAG & DROP VARIABLES TO DROP ZONES TO EXPLORE RELATIONSHIPS FILTER DATA TO DRILL DOWN TO FIND INSIGHTS, MORE THAN A DOZEN GRAPH ELEMENTS

Highly Interactive Graph Builder

Using **Outlier Box Plot** Graph Element Filter **Facility** on ZAU (Chicago/Aurora) Drop **Fiscal Year** in Page Zone to get

Select most extreme outlier

Search on "2/2/2011 & Chicago" Top hit is "Groundhog Day Blizzard" DRAG & DROP VARIABLES TO DROP ZONES TO EXPLORE RELATIONSHIP<mark>S FILTER DA</mark> TO DRILL DOWN TO FIND INSIGHTS, MORE THAN A DOZEN GRAPH ELEMENTS

2012

Multivariate Visual Modeling

DRAG & DROP INDIVIDUAL FITS OF EACH CONTINUOUS FACTOR BY GENDER

Graph Builder

Multivariate Visual Modeling

DRAG & DROP INDIVIDUAL FITS OF EACH CONTINUOUS FACTOR BY GENDER

💌 Graph Builde	r				
Recall Dialog	Done	\sim	e 🚧 🜌 📈 🖬 🞥 🖿 📲 🔚 🔍 🖉 🔀		
10 Columns	_		Title		
III Name ∠ Vi⊇2max			Group X	Wrap	Overlay
A Runtime					
RunPulse					Color
A RstPulse					
MaxPulse					Size
 Age Weight 					Interval
📕 Gender					
Weight in LBS.					Count
🖉 💌 Points					
Summary Statistic	None ~			Gro	
Error Interval	Auto ~	Y	Drag variables into drop zones	ν dn	
Interval Style	Error Bar 🗸				
Jitter	Auto ~				
Jitter Limit					
Variables	\triangleright				
		Map	Х	Freq	Page
		Shape			
		_		_	

Multivariate Visual Modeling

VISUALLY IDENTIFY MOST LIKELY TERMS IN FINAL MODEL

Effect Summary

Course	Le a Manth					DV/alua
Source	Logworth					Fvalue
Runtime	8.405					0.00000
RunPulse	2.823					0.00150
Weight*Gender	2.741					0.00181
Age	2.198					0.00634
Age*Gender	2.179					0.00663
MaxPulse	1.963					0.01088
Weight*Weight	1.392					0.04056
Weight	0.865					0.13652 ^
Gender	0.161					0.69039 ^

Prediction Profiler

Visual Data Discovery with 200 Continuous Factors! This function has only 5 active factors (*x*1, *x*2, *x*3, *x*4, & *x*5).

y = 7

+ $20^{*}x1 + 17^{*}x2 + (-20)^{*}x3 + 10^{*}x4 + 6^{*}x5$ + $(-13)^{*}x1^{*}x1 + (-13)^{*}x2^{*}x2 + 20^{*}x3^{*}x3$ + $19^{*}x1^{*}x2 + (-10)^{*}x4^{*}x5$ + Random Normal [Mean = 0, StdDev = 2.8] (intercept)

(5 main effects - *slopes*)(3 squared effects - *curvature*)

(2 interaction effects - twists)

(Random error)

Animate Column Switcher to View Each Plot of $y v_s x_i$

Stack ALL Factors (200 X 10K = 2M Rows), Then Overlay by Factor, Eliminate the Data Points to View the 200 Smoothers, to See the 4 Dominant Factors x1, x2, x3, & x4

Further **Visual Data Discovery** with 200 Continuous Factors! This function has only **5** active factors (*x1, x2, x3, x4, & x5*).

y = 7+ 20*x1 + 17*x2 + (-20)*x3 + 10*x4 + 6*x5 + (-13)*x1*x1 + (-13)*x2*x2 + 20*x3*x3 + 19*x1*x2 + (-10)*x4*x5

(intercept)

(5 main effects - *slopes*)

(3 squared effects - curvature)

Overlaying by x4 to See *Curvature* in x3 without an Interaction between x3 & x4

y = 7+ 20*x1 + 17*x2 + (-20)*x3 + 10*x4 + 6*x5 + (-13)*x1*x1 + (-13)*x2*x2 + 20*x3*x3 + 19*x1*x2 + (-10)*x4*x5

(intercept)

(5 main effects - slopes)

(3 squared effects - *curvature*)

Overlaying by x4 to See Interaction with x5 without any Curvature in x4 & x5

y = 7+ 20*x1 + 17*x2 + (-20)*x3 + **10***x4 + **6***x5 + (-13)*x1*x1 + (-13)*x2*x2 + 20*x3*x3 + 19*x1*x2 + (-10)*x4*x5

(intercept)

(5 main effects - *slopes*)

(3 squared effects - curvature)

Overlaying by x1 to See Interaction with x2 and Curvature in both x1 & x2

y = 7+ 20*x1 + 17*x2 + (-20)*x3 + 10*x4 + 6*x5 + (-13)*x1*x1 + (-13)*x2*x2 + 20*x3*x3 + 19*x1*x2 + (-10)*x4*x5

(intercept)

(5 main effects - slopes)

(3 squared effects - *curvature*)

Compare Results for 100, 1,000, and 10,000 Data Points

Generating Function for Data Points:

- *y* = 7
- + $20^{*}x1 + 17^{*}x2 + (-20)^{*}x3 + 10^{*}x4 + 6^{*}x5$ + $(-13)^{*}x1^{*}x1 + (-13)^{*}x2^{*}x2 + 20^{*}x3^{*}x3$ + $19^{*}x1^{*}x2 + (-10)^{*}x4^{*}x5$ + Random Normal [Mean = 0, StdDev = 2.8]

The more data used, the better the spline fit approximates the generating function

After Doing **Visual Data Discovery,** Run *Predictor Screening* to Quickly Rank the 200 Factors. There are only 5 active factors (*x1, x2, x3, x4, & x5*), ALL of which are Correctly Identified.

y = 7

+ 20**x*1 + 17**x*2 + (-20)**x*3 + 10**x*4 + 6**x*5 + (-13)**x*1**x*1 + (-13)**x*2**x*2 + 20**x*3**x*3 + 19**x*1**x*2 + (-10)**x*4**x*5

		У		
Predictor	Contribution	Portion		Rank
x.1	143306	0.5326		1
x.2	104031	0.3867		2
x.4	9826	0.0365		3
x.3	6244	0.0232		4
x.5	1246	0.0046		5
x.119	36	0.0001		6
x.168	34	0.0001		7
x.75	31	0.0001		8
x.145	31	0.0001		9
x.22	31	0.0001		10
٦	Top 10 of 20)0 Showr	า 🗌	0 🏠 🖽

 $\mathbf{H}\mathbf{H}\mathbf{N}$

With Reduced Factor List, Easy to Use Machine Learning in JMP[®] Pro

- Partition (Regression/Decision Tree) very fast
- Bootstrap Forest* used in Predictor Screening Averages Many Trees
 - Fast selection of important factors when you have many
 - Bootstrapping randomly picks factors so dominant ones are sometimes absent so they do not overshadow/obscure less important factors
- Neural Network one or two layers, and boosted
 - Often best predictor, but tends to overfit
 - More computationally intensive than trees, especially with many factors
- Regression Ordinary Least Squares, Logistic, Stepwise, or Penalized
 - More computationally intensive than trees, especially with many factors
 - Penalized regression can perform variable selection even with correlated data
 - Analyses provide confidence intervals

*JMP name for Random Forest™

Model Screening with Many Factors (250) and Many Rows of Data (10K)

- Model Screening results (left) with 250 factors and 10,000 rows of data is too big a problem for some methods (regression, SVM) or times out for others (neural network).
- After reviewing results for fast tree methods (e.g., Bootstrap Forest) use top ranked factors and rerun Model Screening (right) to obtain more and better outcomes.

Test			
Method	N	RSquare ~	RASE
Boosted Tree	2001	0.8380	2.9795
Bootstrap Forest	2001	0.8039	3.2782
Decision Tree	2001	0.7649	3.5895
Neural Boosted	2001	0.5467	4.9838
K Nearest Neighbors	2001	0.1832	6.6900

Select Dominant Run Selected Save Script Selected

Support Vector Machines avoided when number of rows > 10000.Linear Model methods skipped because the number of parameters, 753, exceeded the limit of 450.Sum Freq and Sum Weight are suppressed when they are the same as N.

	Time Limit
Method	Exceeded Count
Neural Boosted	1

⊿	Test				
	Method	Details	N	RSquare ~	RASE
	Fit Stepwise	2FI Quad	2001	0.8541	2.8272
	Fit Least Squares	2FI Quad	2001	0.8541	2.8280
	Generalized Regression Lasso	2FI Quad	2001	0.8541	2.8280
	Neural Boosted		2001	0.8500	2.8666
	Boosted Tree		2001	0.8424	2.9382
	Bootstrap Forest		2001	0.8332	3.0237
	K Nearest Neighbors		2001	0.8217	3.1259
	Decision Tree		2001	0.7744	3.5161
	Fit Least Squares		2001	0.7218	3.9040
	Generalized Regression Lasso		2001	0.7218	3.9046
	Fit Stepwise		2001	0.7217	3.9053

Select Dominant Run Selected Save Script Selected

Support Vector Machines avoided when number of rows > 10000.Sum Freq and Sum Weight are suppressed when they are the same as N.

Model Screening

Run 10 selected models all at once (about half a minute in this case) then view ranked performance

						L
Model Screening - JMP EA [2]			-		2
Fits many different predictive mo	dels and prov	vides summarie	es of me	easures of fit.		
Select Columns		Cast Selected	Colum	ins into Roles	Action —	
271 Columns		Y, Response	a v		ОК	
Enter column name	◄ م	V Factor			Cancol	-
droups of 100	^	X, Factor	x .2		Cancer	-
droups of 1000						
Validation 60-20-20			x.4	ļ.	Remove	e
A Row			🚄 x.5	5	Recall	
▶ x.1 etc. (10/0)		Weight	option	nal numeric	Help	-
▷ x.11 etc. (190/0)		Freq	option	nal numeric		
cat.201 etc. (50/0)		Validation		lidation 60 20 20	-	
Random Uniform etc. (3/0)		validation	len va	lidation 60-20-20		
Pred Formula y 2 etc. (2/0)		Ву	option	nal		
Valuation 03-23-10						
Method	Modeling C)ptions		Operational Options		
✓ Decision Tree	🖌 Add Tw	o Way Interact	ions	Set Random Seed		
Bootstrap Forest	Add Qu	uadratics		Time Limit Each		
✓ Boosted Tree		ative Missing		Remove Live Reports		
✓ K Nearest Neighbors				Show Methods in Log		
Naive Bayes						
✓ Neural	Folded Cros	ssvalidation $-$				
Support Vector Machines	Fit repeated	ly with sequen	ced fol	ds.		
✓ Discriminant	K Fold	Crossvalidation	n K	5		
✓ Fit Least Squares	Nested	Crossvalidatio	n K	4 L 5		
✓ Fit Stepwise	Repeated K	Fold				
✓ Logistic Regression	Repeated K					
Generalized Regression						

Model Screening for y								
Table: 250factors 5sig 10K rows Response: y Validation: Validation 60-20-20								
Details								
▷ Training								
Validation								
Method	Details	Ν	RSquare $^{\vee}$	RASE				
Fit Stepwise	2FI Quad	1991	0.8553	2.7927				
Generalized Regression Lasso	2FI Quad	1991	0.8552	2.7935				
Fit Least Squares	2FI Quad	1991	0.8549	2.7967				
Neural Boosted		1991	0.8510	2.8334				
Boosted Tree		1991	0.8387	2.9487				
Bootstrap Forest		1991	0.8319	3.0100				
K Nearest Neighbors		1991	0.8183	3.1297				
Decision Tree		1991	0.7793	3.4486				
Generalized Regression Lasso		1991	0.7244	3.8542				
Fit Stepwise		1991	0.7242	3.8555				
Fit Least Squares		1991	0.7241	3.8558				

<u>Publish</u> models in: Python, C, SAS, SQL, & JavaScript

Profilers for All 10 Models (left) & 3 Selected Models (right)

Compare Results for 100, 1,000, and 10,000 Data Points

Prediction Profiler - Regression, Bootstrap Forest, & Neural Network for 10K Data Points

- Three ML methods per group
- Same amount of data in each group

With enough data all three ML methods well approximate the generating function

Honest Assessment

SUBSET DATA TO CREATE *TRAIN, VALIDATE(TUNE),* & *TEST* GROUPS USE VALIDATE(TUNE) GROUP TO PREVENT OVER-FITTING DATA MINING MODELS

Robust Strategy for Machine Learning

1) Bootstrap Forest – FAST even w/many Xs – Unlikely to Miss Less Dominant Xs 2) Neural Network – Often Most Flexible & Best Predictor – Tendency to Overfit 3) Penalized Regression – Often More Interpretable Model + Confidence Intervals

LLC. All rights reserved

Visually Compare Multiple Machine Learning Models Partition with 5-Splits, Logistic Regression, Neural Network, & LASSO (Binomial)

"LASSO" stands for Least Absolute Shrinkage and Selection Operator

Actual vs. Prediction Plots for 4 Surrogate Models for *Test Data ONLY* (Not used in fitting or tuning the models)

Where(Group-Strat Val = Test)

Each error bar is constructed using the upper and lower quartiles.

STATISTICAL DISCOVERY

Data Curation

RECODE, OUTLIER DETECTION, AND IMPUTE MISSING VALUES, STACK, SPLIT, ETC. *"WHAT YOU JUST DID IN MINUTES TAKES ME HOURS (DAYS!) IN EXCEL..."*

Design of Experiments

DERIVE MAXIMUM INFORMATION FROM FEWEST TESTS – YIELDING "INTERACTIVE" OPTIMIZATION AND TRADE-SPACE ANALYSIS

Prediction Profiler 5.6 Photo Cost27 - JMP Pro [3] X 5.505435 5.4 Tables Rows Cols DOE Analyze Graph Tools Add-Ins View Window Help File Edit 5.2 Speed [5.43099] 🞯 🛃 | 🔉 🗈 🛍 🔤 👬 📾 📰 🖛 🖄 🎾 🖉 🚑 😜 5.0 5.57988] 4.8 ⊿ 7/4 Cols ▼ Dye Sensitizer 1 Sensitizer 2 Reaction Time Speed Contrast Cost 27/0 50 50 250 120 5.36 0.616 0.198 0.7 1 0.689583 50 50 200 5.39 0.537 0.175 180 0.6 Contrast [0.66789] 90 70 200 120 5.31 0.623 0.447 0.5 0.711281 50 200 513 0.431 0.177 90 150 0.4 70 70 250 180 5.37 0.643 0.445 0.8 50 90 300 120 4.79 0.375 0.231 90 90 200 180 5.45 0.626 0.471 0.362327 0.6 90 50 250 150 5.00 0.470 0.670 Cost [0.32333, 0.4 9 50 50 300 150 5.22 0.478 0.283 0.40133] 10 70 90 200 5.41 0.668 0.226 120 0.2 11 250 5.33 0.734 0.310 90 90 250 5.32 0.574 0.257 12 50 50 120 Atilique 0.00544 0.75 13 70 50 200 150 5.49 0.596 0.456 0.5 50 250 0.166 14 70 180 5.22 0.558 15 70 70 250 150 5.57 0.689 0.390 Desi 0.25 16 90 300 150 5.26 0.653 0.226 90 0 17 70 250 150 5.47 0.688 0.356 70 80 Ś 09 2 8 60 09 20 6 88 40 580 120 140 160 081 0.25 0.5 0.75 18 70 300 120 5.42 0.657 0.337 70 19 50 70 200 120 5.43 0.518 0.222 150 20 50 50 300 150 5.15 0.505 0.287 70 21 90 200 120 5.33 0.661 0.457 Reaction 70 22 50 90 300 120 4.97 0.411 0.191 Sensitizer 1 Sensitizer 2 Dye Desirability Time 23 90 50 300 120 5.09 0.492 0.588 **Remembered Settings** 24 90 50 300 180 5.03 0.358 0.733 25 70 250 5.59 0.707 0.318 70 150 Reaction 26 70 90 300 180 5.25 0.605 0.290 Cost Desirability Setting Sensitizer 1 Sensitizer 2 Dye Time Speed Contrast 27 50 200 5.24 0.476 0.177 90 150 Equal Importance Opt 250.57625 5.3542877 0.347702 80.753574 91.269729 120 0.7466933 0.2504014 Mid Point Settings 70 70 250 0.004875 ☆ 🗆 ▼ 150 5.5054353 0.6895831 0.3623274 Cost 6X Speed & Contrast 84.016038 93.725925 283.02514 120 5.2902084 0.72549 0.1991539 0.214425 0.264298 Opt Spd3X-Cntr1X-Cost6X 81.958309 90.706277 286.82246 5.3269582 0.7177857 0.2211116 120

Design of Experiments

DERIVE MAXIMUM INFORMATION FROM FEWEST TESTS – YIELDING "INTERACTIVE" OPTIMIZATION AND TRADE-SPACE ANALYSIS

0.75

0.214425 0.264298

Prediction Profiler 5.6 Photo Cost27 - JMP Pro [3] X 5.505435 5.4 Tables Rows Cols DOE Analyze Graph Tools Add-Ins View Window Help File Edit 5.2 Speed [5.43099] 🞯 🛃 | 🔉 🗈 🛍 🔤 👬 📾 📰 🖛 🖄 🎾 🖉 調 😜 5.0 5.57988] 4.8 7/4 Cols Dye Sensitizer 1 Sensitizer 2 Reaction Time Speed Contrast Cost 27/0 50 50 250 120 5.36 0.616 0.198 0.7 1 0.689583 50 50 200 5 39 0.537 0.175 180 0.6 Contrast [0.66789] 90 70 200 120 5.31 0.623 0.447 0.5 0.711281 50 200 513 0.431 0.177 90 150 0.4 Save to PowerPoint 0.445 70 70 250 180 5.37 0.643 0.8 50 90 300 120 479 0.375 0.231 90 90 200 180 5.45 0.626 0.471 0.362327 0.6 90 50 250 150 5.00 0.470 0.670 Cost [0.32333, 0.4 0.283 g 50 50 300 150 5.22 0.478 0.40133] 10 70 90 200 5.41 0.668 0.226 120 0.2 11 250 5.33 0.734 0.310 90 90 250 5.32 0.574 0.257 12 50 50 120 Atilique 0.00544 0.75 13 70 50 200 150 5.49 0.596 0.456 0.5 50 250 0.166 14 70 180 5.22 0.558 15 70 70 250 150 5.57 0.689 0.390 Desi 0.25 16 90 300 150 5.26 0.653 0.226 90 0 17 70 250 150 5.47 0.688 0.356 70 Ś 09 2 80 60 09 20 80 6 88 40 580 120 140 160 081 0.25 0.5 18 70 300 120 5.42 0.657 0.337 70 19 50 70 200 120 5.43 0.518 0.222 150 20 50 50 300 150 5.15 0.505 0.287 70 21 90 200 120 5.33 0.661 0.457 Reaction 70 22 50 90 300 120 4.97 0.411 0.191 Sensitizer 1 Sensitizer 2 Dye Desirability Time 23 90 50 300 120 5.09 0.492 0.588 **Remembered Settings** 24 90 50 300 180 5.03 0.358 0.733 25 70 250 5.59 0.707 0.318 70 150 Reaction 26 70 90 300 180 5.25 0.605 0.290 Cost Desirability Setting Sensitizer 1 Sensitizer 2 Dye Time Speed Contrast 27 50 200 5.24 0.476 0.177 90 150 Equal Importance Opt 0.347702 80.753574 91.269729 250.57625 120 5.3542877 0.7466933 0.2504014 Mid Point Settings 70 70 250 0.004875 ☆ 🗆 ▼ 150 5.5054353 0.6895831 0.3623274

Cost 6X Speed & Contrast

Opt Spd3X-Cntr1X-Cost6X

84.016038

81.958309

93.725925

90.706277

283.02514

286.82246

120

120

5,2902084

0.72549

5.3269582 0.7177857 0.2211116

0.1991539

Informing Decision Discussions

Prediction Profiler 5.6 5.505435 5.4 5.2 Speed [5.43099, 5.0 5.57988] 4.8 0.7 0.689583 0.6 Contrast [0.66789, 0.5 0.71128] 0.4 0.8 0.362327 0.6 Cost [0.32333, 0.4 0.40133] 0.2 Desirability 0.00244 0.75 0.5 0.25 0 -09 80 2 80 20 -06 50 200 000 240 280 120 140 160 080 0.25 0.5 0.75 -150 70 70 250 Reaction Sensitizer 1 Sensitizer 2 Dye Time Desirability **Remembered Settings** Reaction Setting Sensitizer 1 Sensitizer 2 Cost Desirability Dye Time Speed Contrast Equal Importance Opt 0.347702 80.753574 91.269729 250.57625 120 0.7466933 0.2504014 5.3542877 Mid Point Settings 250 70 70 0.004875 150 5.5054353 0.6895831 0.3623274 Cost 6X Speed & Contrast 283.02514 0.214425 84.016038 93.725925 0.72549 0.1991539 120 5.2902084 Opt Spd3X-Cntr1X-Cost6X 120 5.3269582 0.7177857 0.2211116 0.264298 81.958309 90.706277 286.82246

OPTIMIZATION AND TRADE-SPACE ANALYSIS

Share Analysis via HTML

View optimizations on your phone. Scan the QR code to launch browser, then use finger to interact with the Prediction Profiler and to "Apply" saved settings.

OPTIMIZATION AND TRADE-SPACE ANALYSIS

Reliability

PROBABILITY OF FAILURE, ACCELERATED LIFE TEST, RELIABILITY GROWTH

Life Distribution

Fast Surrogate Modeling

BY MODELING THE "RIGHT NUMBER" OF LONG RUNNING SIMULATIONS (THINK SEQUENTIAL DOE), AN ACCURATE & INSTANTANEOUS PREDICTION CAN BE MADE FOR ANY NEW SCENARIO!

Download & Recording

- 16 Factors
- 50,000 unique cases •
- Each 1,000 times •
- 50 Million Simulations •
- Neural Network for • Surrogate Models

1.6 **Comparative Assessment and Decision Support System for Strategic Military Airlift Capability**

Comparative Assessment and Decision Support System for Strategic Military Airlift Capability

John Salmon, Curtis Iwata, Dimitri Mavris and Neil Weston Georgia Institute of Technology john.salmon@asdl.gatech.edu, curtis.iwata@asdl.gatech.edu, dimitri.mavris@aerospace.gatech.edu, neil.weston@ae.gatech.edu

> Philip Fahringer Lockheed Martin Company philip.fahringer@lmco.com

ABSTRACT

The Lockheed Martin Aeronautics Company has been awarded several programs to modernize the aging C-5 military transport fleet. In order to ensure its continuation amidst budget cuts, it was important to engage the decision makers by providing an environment to analyze the benefits of the modernization program. This paper describes an interface that allows the user to change inputs such as the scenario airfields, take-off conditions, and reliability characteristics. The underlying logistics surrogate model was generated using data from a discrete-event simulation. Various visualizations, such as intercontinental flight paths illustrated in 3D, have been created to aid the user in analyzing scenarios and performing comparative assessments for various output logistics metrics. The capability to rapidly and dynamically evaluate and compare scenarios was developed enabling real-time strategy exploration and trade-offs.

Figure 2. Strategic Airlift Comparison Tool Layout

https://ntrs.nasa. gov/search.jsp? R=20110012110

https://community.jmp.com/t5/US-Federal-Government-JMPr-Users/VIDEO-of-Cr5-Decision-Support-Tool-Dashboard/ta-p/34364

TABULATE

JMP'S DRAG & DROP PIVOT TABLE – EASILY MAKE INTO NEW DATA TABLE

X

Navy Obligated Money by Congressional District - Tabulate - JMP Pro

Tabulate ~ Show Table lumns or Total \$ Obligated in \$M w label area Show Chart award type action type N Sum Show Control Panel BPA CALL ADDITIONAL WORK (NEW AGREEMENT, FAR PART 6 APPLIES) \$4.4 J Show Shading CHANGE ORDER \$1.0 70 CLOSE OUT \$2.5 134 Show Tooltip \sim EXERCISE AN OPTION 40 \$63.6 Show Test Build Panel Mean FUNDING ONLY ACTION Untitled 3 - JMP Pro \times Make Into Data Table Creates a new data table from the LEGAL CONTRACT CANCELLATIC table created in Tabulate OTHER ADMINISTRATIVE ACTION Edit Tables Rows Cols DOE Analyze Graph Tools Add-Ins View Window Help Full Path Column Name File SUPPLEMENTAL AGREEMENT FO 🐚 🛍 🛓 🤮 🛅 🎫 🖿 🖄 🎾 🖉 : 🔛 🦳 🚰 Range Local Data Filter TERMINATE FOR CONVENIENCE % of Total D Redo N Missing DEFINITIVE CONTRACT ADD SUBCONTRACTING PLAN Untitled 3 Sum(Total \$ ADDITIONAL WORK (NEW AGRE 🅨 Source N Categories action type Obligated in \$M) Ν Save Script award type Sum action date CHANGE ORDER 1 BPA CALL 7 ADDITIONAL ... \$4.4 Sum Wat period of p...ce start date Columns (4/0) CLOSE OUT 2 BPA CALL CHANGE \$1.0 70 Variance period of p...nt end date Laward type DEFINITIZE CHANGE ORDER 3 BPA CALL CLOSE OUT \$2.5 134 Std Err period of p...tial end date Laction type DEFINITIZE LETTER CONTRACT CV 4 BPA CALL EXERCISE ... \$63.6 40 Interview of the order of th Sum(Tota...ted in \$M) EXERCISE AN OPTION Median awarding agency code 5 BPA CALL FUNDING ... \$115.9 224 🚄 N FUNDING ONLY ACTION Geometric Mea awarding agency name 6 BPA CALL LEGAL ... \$0.0 1 Interguartile Ra LEGAL CONTRACT CANCELLATIC awarding su...gency code 7 BPA CALL OTHER \$129.8 673 Rows Quantiles NOVATION AGREEMENT Lawarding su...gency name All rows 57 8 BPA CALL SUPPLEMEN... 140 Column % \$8.6 awarding office code OTHER ADMINISTRATIVE ACTIC Selected 0 Lawarding office name 9 BPA CALL TERMINATE REREPRESENTATION OF NON-1 \$0.1 64 Excluded 0 SUPPLEMENTAL AGREEMENT F 10 DEFINITIVE ADD ... 3 Frea Hidden 0 TERMINATE FOR CONVENIENCE 11 DEFINITIVE ADDITIONAL... \$123,973,4 338 Labelled 0 Weight VENDOR ADDRESS CHANGE VENDOR DUNS OR NAME CHAN Page Column DELIVERY ORDER ADD SUBCONTRACTING PLAN 1 ▼ □

Graph Builder – Visual Pivot Table

CONDITIONAL DATA FILTERING "ACTION TYPE" WITHIN "AWARD TYPE"

award_type / action_type ordered by total_dollars_obligated (ascending)

Where(award_type = DEFINITIVE CONTRACT)

Maps and images

NAVY OBLIGATED SPENDING BY CONGRESSIONAL DISTRICT IN \$M

STATISTICAL

Maps and images

• MAPS ANIMATED OVER TIME AND SAVED AS A .GIF CAN BE DROPPED INTO PPT

DROP GIF HERE

Maps and images

MAPS ANIMATED OVER TIME: SAVED AS PPT VIDEO (LEFT) ANIMATED GIF (RIGHT) OR HTML (USE QR CODE TO VIEW AT PUBLIC.JMP.COM ON YOUR PHONE)

Copyright © JMP Statistical Discovery LLC. All rights reserved.

Maps and images

IMAGES CAN BE IMPORTED IN BULK AND SHOWN BY HOVERING ON A DATA POINT

Bivariate Fit of Improvement Ratio By Investment/APUC

JMP as Data HUB

EASILY IMPORT DATA FROM EXCEL, TXT, CSV, PDF, SAS, DATA BASES, WEB, & EASILY EXPORT MODELS (WITH 13 & 14 PRO) TO: SAS, PYTHON, JAVASCRIPT, C, SQL EASILY PUBLISH REPORTS TO WEB (HTML); SAVE REPORTS TO POWERPOINT

review				Worksheets
	Revenue by Territory	Column 2	Column 3	Select Custom sheets to open setting
1				A JAN
2	Country	Units (1000's)	Revenue	TEB MAR
3	France	23	216.89	APR
4	Germany	42	396.06	MAY
5	Italy	12	113.16	JUN
6	UK	32	301.76	JUL
7	China	15	141.45	AUG
8	Japan	34	320.62	SEP
9	Singapore	3	28.29	
10	U.S.	104	980.72	DEC
11	Canada	12	113.16	Select all
12				
13	TOTAL	277	2612.11	
	1			>
Shown: 1	3 / 13			
vidual Wo	rksheet Settings		Preview Pane Refresh	
Workshee	t contains column headers		Update settings on a	ny change
	clump headors start on row		Undata now	ny change
	Julini neduers start on row		opuate now	
1 ÷ N	umber of rows with column	headers 🕂	Show all rows	
2 * D	ata starts on row 🕂			
2 - 0.				
2 • D.	ata starts on column 🕂			
1 ÷ Da	ata starts on column 🖶 e worksheets and try to ma	tch columns		
Di Di Di Di Di Di Di Di Di Di	e worksheets and try to mate	tch columns	natina	

📭 JMP Home Window - JMP Pro [2]							
File	Tables DOE Analyze	Graph Tools Ad					
	New	+					
2	Open	Ctrl+O					
	Quick Open	Alt+Shift+O					
	Close	Ctrl+W					
	Import as Data						
	Import Multiple Files						
	Save	Ctrl+S					
	Save As						
	Revert						
	Database	•					
	SAS	•					
	Internet Open						
	Publish						
	Create Excel Workbook						
	Preferences	Ctrl+K					
3	Print	Ctrl+P					
4	Print Preview						
	Page Setup						
	Send						
	Recent Files	•					
	Save Session Script						
	Exit JMP	Ctrl+Q					

Rej	port: F	Formula Depot - JMP Pro [3]	-
	orn	nula Depot	
Лаr	nage	Models and Generate	Sco
⊿Fe	orm	ula Scripts	
⊿	▼ N	eural - Y	
E E		Show Script	
'		Copy Script	
		Copy Formula as Function	
		Copy Formula as Transform	
		Rename New Column	
		Generate C Code	
		Generate Python Code	
		Generate JavaScript Code	
		Generate SAS Code	
_		Generate SQL Code	
		Run Script	
		Remove	
		.•4	

Fast modern regression __(JMP 12)

Measure	Training	Validation	Test
Number of rows	294	74	74
Sum of Frequencies	294	74	74
-LogLikelihood	1594.5348	402.5022	399.46519
Number of Parameters	7	7	7
BIC	3228.8547	835.13285	829.05883
AICc	3203.4613	820.70136	814.62735
RSquare	0.506121	0.4320668	0.5061904
RMSE	54.852588	55.703388	53.440629
Lambda Penalty	6030.1572		

INTERACT WITH ADAPTIVE LASSO MODEL – VARIABLE & MODEL SELECTION FOR DATA THAT'S HIGHLY CORRELATED AND/OR NON-NORMAL

Near Machine Learning accuracy, AND provides a more interpretable model with confidence intervals

Exploratory Text Analysis (JMP 13)

DIMENSION REDUCTION OF SPARSE DOCUMENT TERM MATRIX INTO DOCUMENT AND TERM VECTORS – ALSO CLUSTERING OF DOCUMENTS AND TOPICS

Functional Data Analysis (JMP 14)

MODELING THE "SHAPE" OF A STREAM OF DATA – SHAPE IS THE FUNDAMENTAL UNIT OF OBSERVATION – DIMENSION REDUCTION WITH FUNCTIONAL PCA ABLE TO CONTROL AND PREDICT SHAPE AS FUNCTION OF DOE FACTORS

JMP Public & Live HTTPS://PUBLIC.JMP.COM AND HTTPS://DEVLIVE16.JMP.COM USE TO SHARE RESULTS DYNAMICALLY WITH NON-JMP USERS.

How long does it take to learn JMP? Depends... on your level of statistical know how

Summary: JMP capabilities that can help you Move from data to decision – *Faster!*

- Exploratory Data Analysis with Dynamic Linking & Filtering
- Design of Experiments Real & Simulated Data
- Reliability Analysis, Accelerated Life Test, Reliability Growth
- Surrogate modeling of simulations
- Visual Multivariate Modeling
- Robust Data Mining using Honest Assessment stopping criteria when using Decision Trees, Neural Networks, Regression, Non-Linear modeling
- Maps and Images animation over time
- Data Curation recoding, impute missing, find outliers, import, export
- Fast and Modern Penalized Regression interact with model (12 Pro)
- Exploratory Text Analysis dimension reduction Topic Vectors (13 Pro)
- Functional Data Analysis modeling the "shape" of a data stream (14 Pro)

My Recorded Tutorials & Slide Decks at www.jmp.com/fedgov

These 9 videos cover predicitve analytics (including text exploration), data visualization, and "What's New in JMP 14?" topics.

Building Better Models Overview and Use of Honest Assessment	<u>Neural Networks</u> - Single Layer, Dual Layer, Boosted	All Graphs are Wrong - Some are Useful - Or view Xan Gregg's Original 2015 Discovery Summit Presentation
Regression Linear, Stepwise, Logistic, & All Possible	<u>Generalized Regression</u> Near Machine Learning Accuracy – More Explainable Model	<u>What's New in JMP 14?</u> JMP Learning Resources
Decision Trees Simple Partition, Bootstrap Forest, & Boosted Tree	<u>Text Exploration</u> Analyze Unstructured Free Text	<u>Functional Data Explorer</u> Modeling a "Stream" of Data – New in JMP 14

Questions or comments?

Thank you.

jmp.com

Copyright © JMP Statistical Discovery LLC. All rights reserved.

JMP Defense & Aerospace Team

Anna-Christina De La Iglesia

Program Manager <u>anna-christina.delaiglesia@jmp.com</u> 919-531-2593

Procurement, Upgrades, License Renewals... **Sam** Tobin Senior Account Representative <u>sam.tobin@jmp.com</u> 919-531-0640

Technical Questions, Getting Started, Tutorials, Mentoring... **Tom** Donnelly, PhD, CAP Principal Systems Engineer <u>tom.donnelly@jmp.com</u> 302-489-9291

- Import WGI data Set
- Time series for Army bases Action Recorder MFG History
- DOE for Paint coating of shell
- Fuse testing simulation via model
- SFO Crime Dashboard
- Action Recorder MFG History

