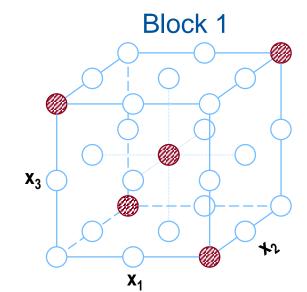
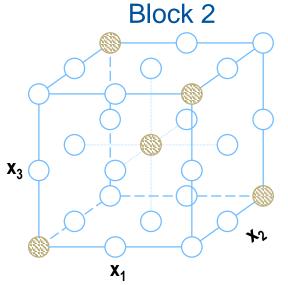
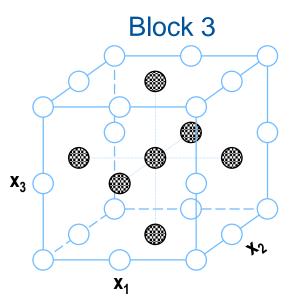
|    | MORS                                                                                                                                                                                                                                                                                         | MORS S<br>16-19 Ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ymposium<br>ne 2014, Hilton Mark                                                                  | orm 712A – Deadline:<br>Center, Alexandria, VA<br>6 or email to <u>liz@mors.org</u> | 2 June 2014<br>Abstract<br>594                                                                          |   |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---|--|
|    |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   | authority to disclose the following pre-                                            |                                                                                                         |   |  |
|    | Principal Author:<br>Thomas A Donnelly                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on in the MORS Final Report, and posting on the MORS website, if applicable. Other Author(s): N/A |                                                                                     |                                                                                                         |   |  |
|    | Principal Author's Organization and complete mailing address:<br>SAS Institute Inc.                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   | X Things a Donnelly Date: 28 May 201                                                |                                                                                                         |   |  |
| nn | 27 Farmingdale Ln<br>Newark, DE 19711                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   | Phone: 302-489-9291                                                                 | FAX:919-677-4444                                                                                        | S |  |
| Π  |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   | Email:tom.donnelly@jmp.com                                                          |                                                                                                         |   |  |
|    | Title of Presentation:<br>Definitive Screening Designs - Run Fewer Trials and Get More Information than Using Fractional<br>Factorial DOE Methods<br>This presentation is: SECRET SECRET//REL TO FVEY CONFIDENTIAL CONFIDENTIAL//REL TO FVEY<br>UNCLASSIFIED Other and will be presented in: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                     |                                                                                                         |   |  |
|    | B UNCLASSIFIED L                                                                                                                                                                                                                                                                             | and the second se | -                                                                                                 | N #-                                                                                |                                                                                                         |   |  |
|    | Tutorial                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | List all WG(s                                                                                     | ) #:                                                                                |                                                                                                         |   |  |
|    |                                                                                                                                                                                                                                                                                              | nection with a go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                   | ) #1                                                                                | YES (Complete Parts I, II, & III)                                                                       |   |  |
|    | Tutorial                                                                                                                                                                                                                                                                                     | sterial developed l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vernment contract.                                                                                | approved research e.g. IR&D and was                                                 | <ul> <li>YES (Complete Parts I, II, &amp; III)</li> <li>YES (Complete Parts I, II &amp; III)</li> </ul> |   |  |

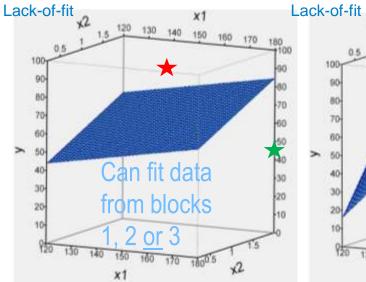


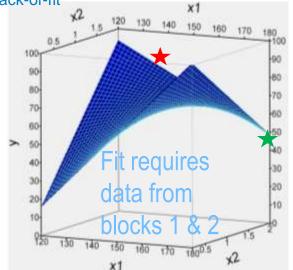
# DESIGN OF EXPERIMENTS: OUSING DEFINITIVE SCREENING DESIGNS TO GET MORE INFORMATION FROM FEWER TRIALS

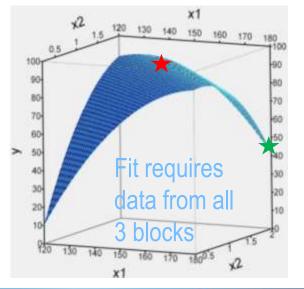

Ĩmp


June17, 2014 82<sup>nd</sup> MORSS Alexandria, VA


Tom Donnelly, PhD Systems Engineer & Co-insurrectionist JMP Federal Government Team


Copyright © 2013, SAS Institute Inc. All rights reserved

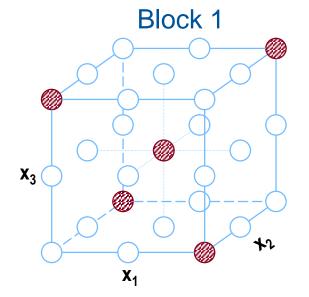

## **CLASSIC RESPONSE-SURFACE DOE IN A NUTSHELL**







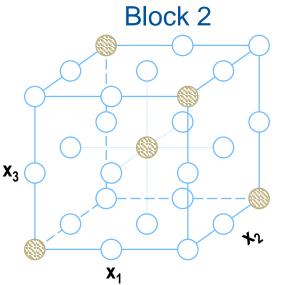








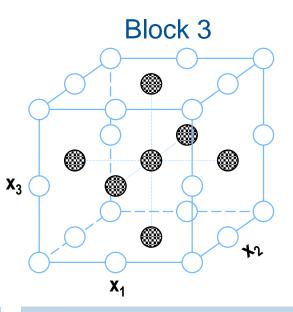


## **POLYNOMIAL MODELS USED TO CALCULATE SURFACES**



$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$$

Run this block 1st to:

(i) estimate the main effects\*(ii) use center point to check for curvature.




 $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$ 

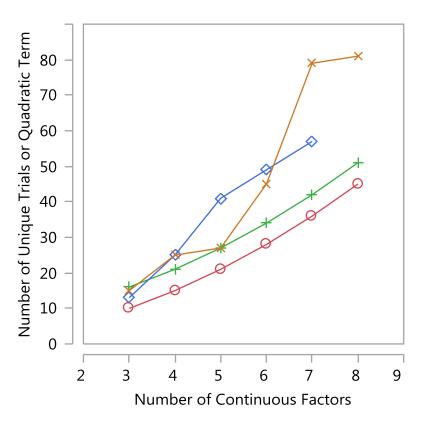
+  $a_{12}x_1x_2$  +  $a_{13}x_1x_3$  +  $a_{23}x_2x_3$ 

Run this block 2nd to:

(i) repeat main effects estimate,
(ii) check if process has shifted
(iii) add interaction effects to
model <u>if needed.</u>



 $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$ +  $a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3$ +  $a_{11} x_1^2 + a_{22} x_2^2 + a_{33} x_3^2$ 


Run this block 3rd to:

(i) repeat main effects estimate,
(ii) check if process has shifted
(iii) add curvature effects to
model <u>if needed.</u>





## NUMBER OF UNIQUE TRIALS FOR 3 RESPONSE-SURFACE DESIGNS AND NUMBER OF QUADRATIC MODEL TERMS VS. NUMBER OF CONTINUOUS FACTORS



- ×— Unique Trials in Central Composite Design
- Output: Out
- Unique Trials in I-optimal Design with 6 df for Model Error
- Terms in Quadratic Model

If generally running 3, 4 or 5-factor fractional-factorial designs...

- 1. How many interactions are you not investigating?
- 2. How many more trials needed to fit curvature?
- 3. Consider two stages: Definitive Screening + Augmentation





## Definitive Screening Designs

- Efficiently estimate main and quadratic effects for no more and often fewer trials than traditional designs
- If only a few factors are important the design may collapse into a "one-shot" design that supports a response-surface model
- If many factors are important the design can be augmented to support a response-surface model
- Case study for a 10-variable process shows that it can be optimized in just 23 unique trials





## **Definitive Screening Designs**

For continuous factors only - three levels

Jones, B., and C. J. Nachtsheim (2011). "A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects," Journal of Quality Technology, 43 pp. 1-14

## Construction via Conference Matrices

Xiao, L, Lin, D. K.J., and B. Fengshan (2012). "Constructing Definitive Screening Designs Using Conference Matrices," Journal of Quality Technology, 44, pp. 1-7.

## For continuous factors AND two-level categorical factors

Jones, B., and C. J. Nachtsheim (2013). "Definitive Screening Designs with Added Two-Level Categorical Factors," Journal of Quality Technology, 45 pp. 121-129







# A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects

## BRADLEY JONES

SAS Institute, Cary, NC 27513

## CHRISTOPHER J. NACHTSHEIM

Carlson School of Management, University of Minnesota, Minneapolis, MN 55455

Journal of Quality Technology

Vol. 43, No. 1, January 2011

## PAPER AND CATALOGUE OF DEFINITIVE SCREENING DESIGNS FOR 4 TO 30 FACTORS AVAILABLE AT ASQ WEBSITE: HTTP://ASQ.ORG/QIC/DISPLAY-ITEM/INDEX.HTML?ITEM=33051





## **IN ORIGINAL 2011 JQT PAPER - DESIGN SIZE IS 2M + 1**

24 -++-+--0 25 00000000000

SSAS HOWER

|    | m = 9     |    | m = 10     |    | m = 11      |    | m = 12                                |
|----|-----------|----|------------|----|-------------|----|---------------------------------------|
| 1  | 0+++++++  | 1  | 0++-++++-+ | 1  | 0-+++       | 1  | 0+-++++++++++++++++++++++++++++++++++ |
| 2  | 0         | 2  | 0++-       | 2  | 0+-++++-+-  | 2  | 0++-+-++-                             |
| 3  | +0+-++-   | 3  | +0-++-++   | 3  | -0+++       | 3  | -0++++++                              |
| 4  | -0-+-++-+ | 4  | -0+++      | 4  | +0++-++++   | 4  | +0+++                                 |
| 5  | -+0-+-+   | 5  | -+0+       | 5  | 0+++++      | 5  | ++0-++-++-++                          |
| 6  | +-0+-+-++ | 6  | +-0+++-+++ | 6  | ++0+++-     | 6  | 0+++                                  |
| 7  | +0++      | 7  | -++0+++-   | 7  | 0-++-++-    | 7  | +0+-+-++                              |
| 8  | ++-0-+++- | 8  | +0-+++     | 8  | +++0+++     | 8  | -++0-+-+-++-                          |
| 9  | +-+-0++   | 9  | 0++++-     | 9  | ++0+-++++   | 9  | ++++0-++++++                          |
| 10 | -+-+0++   | 10 | ++++0+     | 10 | -++-0-+     | 10 | 0+                                    |
| 11 | +0+++     | 11 | -+-++0+-++ | 11 | ++-0-+-+-   | 11 | +-+-+0++-+-+                          |
| 12 | ++++-0    | 12 | +-+0-+     | 12 | +++0+-+-+   | 12 | -+-+-0+-+-                            |
| 13 | ++++0-+   | 13 | ++0+++     | 13 | ++-0++      | 13 | ++++-+0+                              |
| 14 | ++0+-     | 14 | ++++0      | 14 | ++++0++     | 14 | +-0++++-                              |
| 15 | +++-0-    | 15 | ++++-++0+- | 15 | -++++0+++   | 15 | +++0++                                |
| 16 | ++++0+    | 16 | +          | 16 | +++-0       | 16 | ++++0++                               |
| 17 | -+++0     | 17 | ++++0-     | 17 | -++0-+      | 17 | +-+++0++-                             |
| 18 | +++-+-0   | 18 | ++++0+     | 18 | +-+++-+-0+- | 18 | -+++0+                                |
| 19 | 000000000 | 19 | +-+-+-+0   | 19 | +++-0+      | 19 | ++-+++-0                              |
|    |           | 20 | -+-+-+-0   | 20 | -+++++0-    | 20 | +++-+0+++                             |
|    |           | 21 | 0000000000 | 21 | ++-+0       | 21 | -+-+++++0+                            |
|    |           |    |            | 22 | +-+++++0    | 22 | +-+++-0-                              |
|    |           |    |            | 23 | 00000000000 | 23 | ++-+0                                 |



## DEFINITIVE SCREENING DESIGNS FROM CONFERENCE MATRICES XIAO, BAI AND LIN (JQT, 2012)

The D-efficiency is 92.3%, higher than 89.8% for the design given in Jones and Nachtsheim (2011).

$$\mathbf{D} = \begin{pmatrix} \mathbf{C} \\ -\mathbf{C} \\ \mathbf{0} \end{pmatrix} =$$

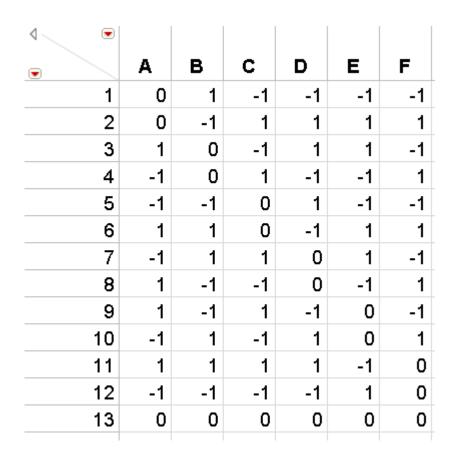
http://www.newton.ac.uk/programmes/DAE/seminars/090209001.pdf

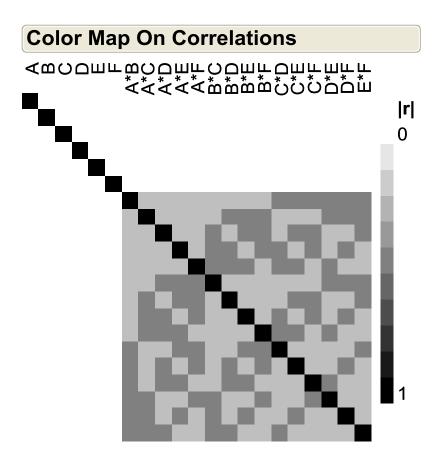
POWER



## CONFERENCE MATRIX METHOD IN 2012 JQT PAPER DESIGN SIZE IS 2M + 3 FOR ODD M DESIGN SIZE IS 2M + 1 FOR EVEN M

### **7-FACTOR – DSD17**


### 8-FACTOR – DSD17


|    | Α  | в  | с  | D  | E  | F  | G  |    | Α  | в  | с  | D  | E  | F  | G  | н  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| 2  | 0  | -1 | -1 | -1 | -1 | -1 | -1 | 2  | 0  | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
| 3  | 1  | 0  | -1 | -1 | 1  | -1 | 1  | 3  | 1  | 0  | -1 | -1 | 1  | -1 | 1  | 1  |
| 4  | -1 | 0  | 1  | 1  | -1 | 1  | -1 | 4  | -1 | 0  | 1  | 1  | -1 | 1  | -1 | -1 |
| 5  | 1  | 1  | 0  | -1 | -1 | 1  | -1 | 5  | 1  | 1  | 0  | -1 | -1 | 1  | -1 | 1  |
| 6  | -1 | -1 | 0  | 1  | 1  | -1 | 1  | 6  | -1 | -1 | 0  | 1  | 1  | -1 | 1  | -1 |
| 7  | 1  | 1  | 1  | 0  | -1 | -1 | 1  | 7  | 1  | 1  | 1  | 0  | -1 | -1 | 1  | -1 |
| 8  | -1 | -1 | -1 | 0  | 1  | 1  | -1 | 8  | -1 | -1 | -1 | 0  | 1  | 1  | -1 | 1  |
| 9  | 1  | -1 | 1  | 1  | 0  | -1 | -1 | 9  | 1  | -1 | 1  | 1  | 0  | -1 | -1 | 1  |
| 10 | -1 | 1  | -1 | -1 | 0  | 1  | 1  | 10 | -1 | 1  | -1 | -1 | 0  | 1  | 1  | -1 |
| 11 | 1  | 1  | -1 | 1  | 1  | 0  | -1 | 11 | 1  | 1  | -1 | 1  | 1  | 0  | -1 | -1 |
| 12 | -1 | -1 | 1  | -1 | -1 | 0  | 1  | 12 | -1 | -1 | 1  | -1 | -1 | 0  | 1  | 1  |
| 13 | 1  | -1 | 1  | -1 | 1  | 1  | 0  | 13 | 1  | -1 | 1  | -1 | 1  | 1  | 0  | -1 |
| 14 | -1 | 1  | -1 | 1  | -1 | -1 | 0  | 14 | -1 | 1  | -1 | 1  | -1 | -1 | 0  | 1  |
| 15 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | 15 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | 0  |
| 16 | -1 | 1  | 1  | -1 | 1  | -1 | -1 | 16 | -1 | 1  | 1  | -1 | 1  | -1 | -1 | 0  |
| 17 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 17 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

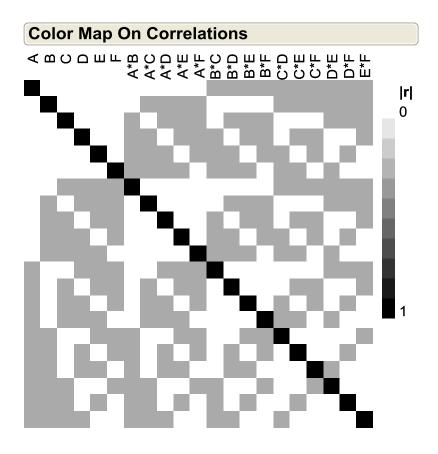




## **6-FACTOR, 13-TRIAL, DEFINITIVE SCREENING DESIGN**





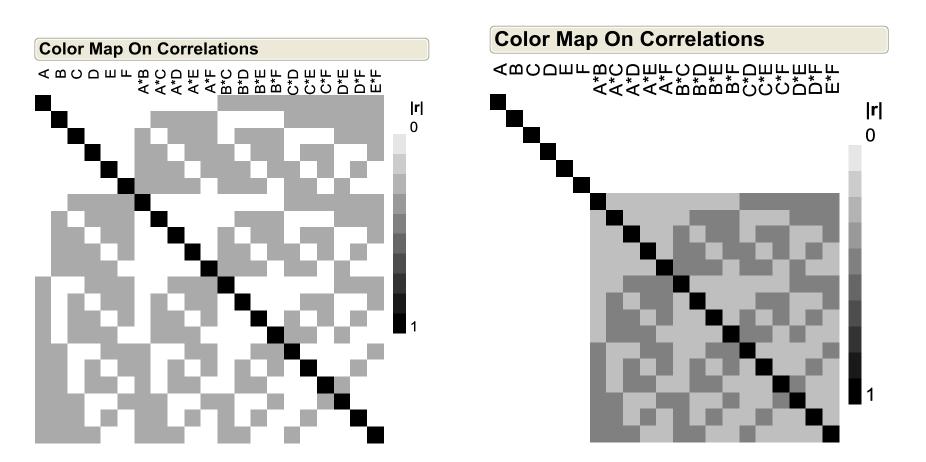

Sas Heren





## **6-FACTOR, 12-TRIAL, PLACKETT-BURMAN DESIGN**

| ● _ ● |    |    |    |    |    |    |
|-------|----|----|----|----|----|----|
| •     | Α  | в  | С  | D  | E  | F  |
| 1     | 1  | -1 | 1  | -1 | 1  | 1  |
| 2     | -1 | -1 | 1  | -1 | -1 | 1  |
| 3     | 1  | 1  | 1  | -1 | -1 | -1 |
| 4     | -1 | 1  | -1 | -1 | 1  | -1 |
| 5     | -1 | -1 | -1 | -1 | 1  | -1 |
| 6     | 1  | -1 | 1  | 1  | 1  | -1 |
| 7     | 1  | 1  | -1 | -1 | -1 | 1  |
| 8     | 1  | 1  | -1 | 1  | 1  | 1  |
| 9     | -1 | -1 | -1 | 1  | -1 | 1  |
| 10    | 1  | -1 | -1 | 1  | -1 | -1 |
| 11    | -1 | 1  | 1  | 1  | -1 | -1 |
| 12    | -1 | 1  | 1  | 1  | 1  | 1  |









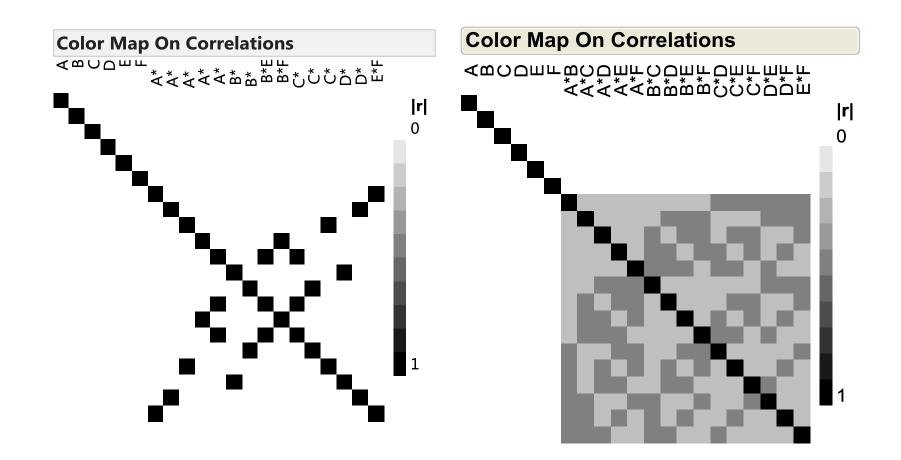

## COLOR MAPS FOR 6-FACTOR, PLACKETT-BURMAN (LEFT) AND DEFINITIVE SCREENING DESIGN (RIGHT)




Including center point with Plackett-Burman, these two designs are both 13 trials Same size BUT Definitive Screening can test for curvature in each factor






## **6-FACTOR, 16-TRIAL, REGULAR FRACTIONAL FACTORIAL**





Sas Hower

## COLOR MAPS FOR 6-FACTOR, FRACTIONAL FACTORIAL (LEFT) AND DEFINITIVE SCREENING DESIGN (RIGHT)



Including center point with FF increases size to 17 trials - 13-trial Definitive Screening Design is **4 fewer tests AND can test for curvature in each factor** 





## **DO WE GIVE UP NOTHING?**

- Relative to same size classic 2-level screening designs
  - Confidence intervals increase typically ≤10%
  - Standard error increases typically ≤ 10%
  - Power is reduced for main effects typically  $\leq 10\%$  (when comparing just ME)
  - Power for squared terms is "low"
    - » Still better than power for single center point test for curvature
    - » Power is same as much larger Central Composite Design supporting full quadratic model

## **ANY OTHER WEAKNESSES?**

- Factor range for screening may not include optimum
  - So follow on design will be over different ranges really can't augment
  - This is more likely with early product development than with mature systems





## **CONFIDENCE INTERVAL, STANDARD ERROR & MAIN EFFECTS POWER FOR 6-FACTOR DESIGNS:**

## **PLACKETT-BURMAN 12 + CP DEFINITIVE SCREENING DESIGN 13** FRACTIONAL-FACTORIAL 16 + CP **DEFINITIVE SCREENING DESIGN 17**

### **PB12+CP**

| Estimatio | on Efficiency       |                           |
|-----------|---------------------|---------------------------|
|           | Fractional Increase | <b>Relative Std Error</b> |
| Parameter | in CI Length        | of Parameters             |
| Intercept | 0                   | 0.277                     |
| X1        | 0.041               | 0.289                     |
| X2        | 0.041               | 0.289                     |
| X3        | 0.041               | 0.289                     |
| X4        | 0.041               | 0.289                     |
| X5        | 0.041               | 0.289                     |

Estimation Efficience

X6

| -     |      | •     |
|-------|------|-------|
| DOWOR | Anal | VCIC  |
| Power | Alla | IVSIS |
|       |      |       |

Significance Level 0.05 Anticipated RMSE 1 Anticipated Parameter Coefficients Power I

| rurumeter | coefficients | 1 Ower |  |
|-----------|--------------|--------|--|
| Intercept | 1            | 0.85   |  |
| X1        | 1            | 0.821  |  |
| X2        | 1            | 0.821  |  |
| X3        | 1            | 0.821  |  |
| X4        | 1            | 0.821  |  |
| X5        | 1            | 0.821  |  |
| X6        | 1            | 0.821  |  |

**DSD13** 

0.041

|           | <b>Fractional Increase</b> | <b>Relative Std Error</b>             |
|-----------|----------------------------|---------------------------------------|
| Parameter | in CI Length               | of Parameters                         |
| Intercept | 0                          | 0.277                                 |
| X1        | 0.14                       | 0.316                                 |
| X2        | 0.14                       | 0.316                                 |
| Х3        | + 10 <sup>0,14</sup>       | · · · · · · · · · · · · · · · · · · · |
| X4        | + 10%00.14                 | $+9\%_{0.316}^{0.316}$                |
| X5        | 0.14                       | 0.316                                 |
| X6        | 0.14                       | 0.316                                 |

0 289

| Significance Level | 0.05 |
|--------------------|------|
| Anticipated RMSE   | 1    |

|           | Anticipated                           |       |
|-----------|---------------------------------------|-------|
| Parameter | Coefficients                          | Power |
| Intercept | 1                                     | 0.85  |
| X1        | 1                                     | 0.75  |
| X2        | 1                                     | 0.75  |
| X3        | - <b>9%</b> <sup>1</sup> <sub>1</sub> | 0.75  |
| X4        | - 9% <sub>1</sub>                     | 0.75  |
| X5        | 1                                     | 0.75  |
| X6        | 1                                     | 0.75  |

## FF16+CP

| Estimation Efficiency |                     |                    |  |  |  |
|-----------------------|---------------------|--------------------|--|--|--|
|                       | Fractional Increase | Relative Std Error |  |  |  |
| Parameter             | in CI Length        | of Parameters      |  |  |  |
| Intercept             | 0                   | 0.243              |  |  |  |
| X1                    | 0.031               | 0.25               |  |  |  |
| X2                    | 0.031               | 0.25               |  |  |  |
| X3                    | 0.031               | 0.25               |  |  |  |
| X4                    | 0.031               | 0.25               |  |  |  |
| X5                    | 0.031               | 0.25               |  |  |  |
| X6                    | 0.031               | 0.25               |  |  |  |
|                       |                     |                    |  |  |  |

#### **Power Analysis**

Significance Level 0.05 Anticipated RMSE 1

| Anticipated |              |       |  |
|-------------|--------------|-------|--|
| Parameter   | Coefficients | Power |  |
| Intercept   | 1            | 0.959 |  |
| X1          | 1            | 0.949 |  |
| X2          | 1            | 0.949 |  |
| Х3          | 1            | 0.949 |  |
| X4          | 1            | 0.949 |  |
| X5          | 1            | 0.949 |  |
| X6          | 1            | 0.949 |  |

## **DSD17**

| Estimation Efficiency |                       |                           |  |
|-----------------------|-----------------------|---------------------------|--|
|                       | Fractional Increase   | <b>Relative Std Error</b> |  |
| Parameter             | in CI Length          | of Parameters             |  |
| Intercept             | 0                     | 0.243                     |  |
| X1                    | 0.102                 | 0.267                     |  |
| X2                    | 0.102                 | 0.267                     |  |
| Х3                    | + 7% <sup>0.102</sup> | $-70/^{0.267}$            |  |
| X4                    | + <b>/ %</b> 0.102    | + 7‰.267                  |  |
| X5                    | 0.102                 | 0.267                     |  |
| X6                    | 0.102                 | 0.267                     |  |
|                       |                       |                           |  |

#### **Power Analysis**

Significance Level 0.05 Anticipated RMSE 1

#### Anticipated **Parameter Coefficients Power** Intercept 1 0.959 Χ1 1 0.92 X2 1 0.92 Х3 0.92 1 **3%**<sup>1</sup><sub>1</sub> Χ4 0.92 X5 1 0.92

1

0.92



X6

## **QUADRATIC TERM POWER FOR TEN 6-FACTOR DESIGNS – SCREENING & RSM**

| Power Analysis       |      |       |
|----------------------|------|-------|
| Significance Level 0 | .05  |       |
| Anticipated RMSE     | 1    |       |
| Anticipa             | ted  |       |
| Parameter Coefficie  | ents | Power |
| Intercept            | 1    | 0.073 |
| X1                   | 1    | 0.196 |
| X2                   | 1    | 0.196 |
|                      | 1    | 0.196 |
| X4 <b>DSD13</b>      | 1    | 0.196 |
| X5                   | 1    | 0.196 |
| X6                   | 1    | 0.196 |
| X1*X1                | 1    | 0.096 |
| X2*X2                | -1   | 0.096 |
| X3*X3 <b>0.10</b>    | 1    | 0.096 |
| X4*X4                | -1   | 0.096 |
| X5*X5                | 1    | 0.096 |
| X6*X6                | -1   | 0.096 |

| Power Analysis     |        |       |  |
|--------------------|--------|-------|--|
| Significance Level | 0.05   |       |  |
| Anticipated RMSE   | 1      |       |  |
| Anticipated        |        |       |  |
| Parameter Coeffic  | cients | Power |  |
| Intercept          | 1      | 0.13  |  |
| X1                 | 1      | 0.789 |  |
| X2                 | 1      | 0.789 |  |
| ×3PB12+0           | CD     | 0.789 |  |
| X4                 | 1      | 0.789 |  |
| X5                 | 1      | 0.789 |  |
| X6                 | 1      | 0.789 |  |
| X1*X1              | 1      | 0.124 |  |

0.12

| <b>Power Analysis</b> |        |       |
|-----------------------|--------|-------|
| Significance Level    | 0.05   |       |
| Anticipated RMSE      | 1      |       |
| Antici                | pated  |       |
| Parameter Coeffi      | cients | Power |
| Intercept             | 1      | 0.13  |
| X1                    | 1      | 0.796 |
| X2                    | 1      | 0.796 |
|                       | _ 1    | 0.796 |
|                       | 1      | 0.796 |
| X5                    | 1      | 0.796 |
| X6                    | 1      | 0.796 |
| X1*X1                 | 1      | 0.211 |
| X2*X2                 | -1     | 0.211 |
| X3*X3 0.2             | 1      | 0.211 |
| X4*X4                 | -1     | 0.211 |
| X5*X5                 | 1      | 0.211 |
| X6*X6                 | -1     | 0.211 |

| <b>Power Analysis</b> |        |                |  |
|-----------------------|--------|----------------|--|
| Significance Level    | 0.05   |                |  |
| Anticipated RMSE      | 1      |                |  |
| Anticipated           |        |                |  |
| Parameter Coeffi      | cients | Power          |  |
| Intercept             | 1      | 0.146          |  |
|                       |        |                |  |
| X1                    | 1      | 0.944          |  |
| X1<br>X2              | 1<br>1 | 0.944<br>0.944 |  |
| , ( <u>1</u>          | 1      | 0.5            |  |

| 1 | 0.944 |
|---|-------|
| 1 | 0.944 |
| 1 | 0.944 |
| 1 | 0.14  |
|   |       |

0.14

X5

X6

X1\*X1

| <b>Power Analysis</b>        |      |       |  |  |
|------------------------------|------|-------|--|--|
| Significance Level           | 0.05 |       |  |  |
| Anticipated RMSE             | 1    |       |  |  |
| Anticipated                  |      |       |  |  |
| Parameter Coefficients Power |      |       |  |  |
| Intercept                    | 1    | 0.159 |  |  |
| X1                           | 1    | 0.959 |  |  |
| X2                           | 1    | 0.959 |  |  |
|                              | _ 1  | 0.959 |  |  |
| X4 DSD2                      | 1 1  | 0.959 |  |  |
| X5                           | 1    | 0.959 |  |  |
| X6                           | 1    | 0.959 |  |  |
| X1*X1                        | 1    | 0.261 |  |  |
| X2*X2                        | -1   | 0.261 |  |  |
| <sup>X3*X3</sup> 0.28        | 1    | 0.261 |  |  |
| X4*X4                        | -1   | 0.261 |  |  |
| X5*X5                        | 1    | 0.261 |  |  |
| X6*X6                        | -1   | 0.261 |  |  |

| <b>Power Analysis</b> |            |       |
|-----------------------|------------|-------|
| Significance Level    | 0.05       |       |
| Anticipated RMSE      | 1          |       |
| Antici                | pated      |       |
| Parameter Coeffi      | cients     | Power |
| Intercept             | 1          | 0.839 |
| X1                    | 1          | 1     |
| X2                    | 1          | 1     |
| <sup>X3</sup> CCD4    | <b>5</b> 1 | 1     |
| X4                    | 1          | 1     |
| X5                    | 1          | 1     |
| X6                    | 1          | 1     |
| X1*X1                 | 1          | 0.321 |
| X2*X2                 | 1          | 0.321 |
| x3*x3 <b>0.32</b>     | 1          | 0.321 |
| X4*X4                 | 1          | 0.321 |
| X5*X5                 | 1          | 0.321 |
| X6*X6                 | 1          | 0.321 |

| Power Analysis     |       |       |  |
|--------------------|-------|-------|--|
| Significance Level | 0.05  |       |  |
| Anticipated RMSE   | 1     |       |  |
| Anticip            | oated |       |  |
| Parameter Coeffic  | ients | Power |  |
| Intercept          | 1     | 0.259 |  |
| X1                 | 1     | 0.985 |  |
| X2                 | 1     | 0.985 |  |
| хз 2Х              | 1     | 0.985 |  |
|                    | 2 1   | 0.985 |  |
| X5                 | 2 1   | 0.985 |  |
| X6                 | 1     | 0.985 |  |
| X1*X1              | 1     | 0.488 |  |
| X2*X2              | -1    | 0.488 |  |
| X3*X3 <b>0.49</b>  | 1     | 0.488 |  |
| X4*X4              | -1    | 0.488 |  |
| X5*X5              | 1     | 0.488 |  |
| X6*X6              | -1    | 0.488 |  |

| <b>Power Analysis</b>     |       |       |
|---------------------------|-------|-------|
| Significance Level        | 0.05  |       |
| Anticipated RMSE          | 1     |       |
| Antici                    | oated |       |
| Parameter Coeffic         | ients | Power |
| Intercept                 | 1     | 0.164 |
| X1                        | 1     | 0.997 |
| X2                        | 1     | 0.997 |
| <sup>X3</sup> <b>BB49</b> | 1     | 0.997 |
| X4                        | 1     | 0.997 |
| X5                        | 1     | 0.997 |
| X6                        | 1     | 0.997 |
| X1*X1                     | 1     | 0.608 |
| X2*X2                     | -1    | 0.608 |
| x3*x3 <b>0.61</b>         | 1     | 0.608 |
| X4*X4                     | -1    | 0.608 |
| X5*X5                     | 1     | 0.608 |
| X6*X6                     | -1    | 0.608 |

| 0.05 |                                                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    |                                                                                                                                                                          |
| ated |                                                                                                                                                                          |
| ents | Power                                                                                                                                                                    |
| 1    | 0.39                                                                                                                                                                     |
| _ 1  | 0.994                                                                                                                                                                    |
| Ni   | 0.996                                                                                                                                                                    |
| _1   | 0.996                                                                                                                                                                    |
|      | 0.996 🖉                                                                                                                                                                  |
| 4    | 0.993                                                                                                                                                                    |
| 1    | 0.993                                                                                                                                                                    |
| 1    | 0.583                                                                                                                                                                    |
| -1   | 0.587                                                                                                                                                                    |
| 1    | 0.568                                                                                                                                                                    |
| -1   | 0.623                                                                                                                                                                    |
| 1    | 0.574                                                                                                                                                                    |
| -1   | 0.559                                                                                                                                                                    |
|      | 1<br>ated<br>ents<br>1<br>1<br><b>N</b><br>1<br><b>V</b><br>1<br><b>V</b><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |

**Power Analysis** 

| <b>Power Analysis</b> |                        |       |
|-----------------------|------------------------|-------|
| Significance Level    | 0.05                   |       |
| Anticipated RMSE      | 1                      |       |
| Antici                | pated                  |       |
| Parameter Coeffi      | cients                 | Powe  |
| Intercept             | 1                      | 0.466 |
| X1                    | 1                      | 0.995 |
| X2                    | 1                      | 0.991 |
|                       | <b>R1</b> <sup>1</sup> | 0.992 |
| X4                    | 1                      | 0.995 |
| X5                    | 1                      | 0.989 |
| X6                    | 1                      | 0.993 |
| X1*X1                 | 1                      | 0.597 |
| X2*X2                 | -1                     | 0.659 |
| x3*x3 <b>0.63</b>     | 1                      | 0.693 |
| X4*X4                 | -1                     | 0.633 |
| X5*X5                 | 1                      | 0.594 |
| X6*X6                 | -1                     | 0.623 |

SSAS HE



## POWER FOR 6 MAIN EFFECTS & 6 QUADRATIC TERMS FOR ALL TERMS VS. ONE QUAD TERM AT A TIME

#### **Power Analysis**

| Significance Level                      | 0.05   |       |
|-----------------------------------------|--------|-------|
| Anticipated RMSE                        | 1      |       |
| Antici                                  | pated  |       |
| Parameter Coeffic                       | cients | Power |
| Intercept                               | 1      | 0.073 |
| X1                                      | 1      | 0.196 |
| X2                                      | 1      | 0.196 |
|                                         | 1      | 0.196 |
| <sup>x3</sup> <sub>X4</sub> <b>DSD1</b> | 2 1    | 0.196 |
| X5                                      | 1      | 0.196 |
| X6                                      | 1      | 0.196 |
| X1*X1                                   | 1      | 0.096 |
| X2*X2                                   | -1     | 0.096 |
| X3*X3 0.10                              | 1      | 0.096 |
| X4*X4                                   | -1     | 0.096 |
| X5*X5                                   | 1      | 0.096 |
| X6*X6                                   | -1     | 0.096 |
|                                         |        |       |

| <b>Power Analysis</b> |        |       |
|-----------------------|--------|-------|
| Significance Level    | 0.05   |       |
| Anticipated RMSE      | 1      |       |
| Antici                | pated  |       |
| Parameter Coeffic     | cients | Power |
| Intercept             | 1      | 0.13  |
| X1                    | 1      | 0.796 |
| X2                    | 1      | 0.796 |
| X3                    | 1      | 0.796 |
| X4 DSD1               | 1      | 0.796 |
| X5                    | 1      | 0.796 |
| X6                    | 1      | 0.796 |
| X1*X1                 | 1      | 0.211 |
| X2*X2                 | -1     | 0.211 |
| X3*X3 0.21            | 1      | 0.211 |
| X4*X4                 | -1     | 0.211 |
| X5*X5                 | 1      | 0.211 |
| X6*X6                 | -1     | 0.211 |

| $\mathbf{D}$ | 14/ | or | / r |   | VCI | ~  |
|--------------|-----|----|-----|---|-----|----|
| гu           | vv  | С1 |     | a | ysi | э. |
|              |     |    |     |   |     |    |

| Significance Level | 0.05       |       |
|--------------------|------------|-------|
| Anticipated RMSE   | 1          |       |
| Antici             | pated      |       |
| Parameter Coeffi   | cients     | Power |
| Intercept          | 1          | 0.291 |
| X1                 | 1          | 0.716 |
| X2                 | 1          | 0.716 |
|                    | <b>9</b> 1 | 0.716 |
|                    | <b>J</b> 1 | 0.716 |
| X5                 | 1          | 0.716 |
| X6                 | 1          | 0.716 |
| X1*X1              | 1          | 0.236 |
|                    |            |       |

0.24

| <b>Power Analysis</b> |        |       |
|-----------------------|--------|-------|
| Significance Level    | 0.05   |       |
| Anticipated RMSE      | 1      |       |
| Antici                | pated  |       |
| Parameter Coeffic     | cients | Power |
| Intercept             | 1      | 0.341 |
| X1                    | 1      | 0.913 |
| X2                    | 1      | 0.913 |
| X3                    | 1      | 0.913 |
|                       | 1      | 0.913 |
| X5                    | 1      | 0.913 |
| X6                    | 1      | 0.913 |
| X1*X1                 | 1      | 0.29  |

0.29

#### Power Analysis

| Significance Level                       | 0.05                   |       |
|------------------------------------------|------------------------|-------|
| Anticipated RMSE                         | 1                      |       |
| Antici                                   | pated                  |       |
| Parameter Coeffic                        | cients                 | Power |
| Intercept                                | 1                      | 0.13  |
| X1                                       | 1                      | 0.789 |
| X2                                       | 1                      | 0.789 |
| <sup>X3</sup> <sub>X4</sub> <b>PB12+</b> | ch                     | 0.789 |
|                                          | <b>6P</b> <sub>1</sub> | 0.789 |
| X5                                       | 1                      | 0.789 |
| X6                                       | 1                      | 0.789 |
| X1*X1                                    | 1                      | 0.124 |
|                                          |                        |       |

0.12

| Power Analysis                      |        |       |
|-------------------------------------|--------|-------|
| Significance Level                  | 0.05   |       |
| Anticipated RMSE                    | 1      |       |
| Antici                              | pated  |       |
| Parameter Coeffic                   | cients | Power |
| Intercept                           | 1      | 0.146 |
| X1                                  | 1      | 0.944 |
| X2                                  | 1      | 0.944 |
| X3                                  | 1      | 0.944 |
| <sup>^3</sup> x <sub>4</sub> FF16+0 | GP     | 0.944 |
| X5                                  | 1      | 0.944 |
| X6                                  | 1      | 0.944 |
| X1*X1                               | 1      | 0.14  |

0.14





# Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products

# **\$106 Million Recovery Act Investment will Reduce CO2 Emissions and Mitigate Climate Change**

Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with \$106 million from the American Recovery and Reinvestment Act -matched with \$156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans can use.

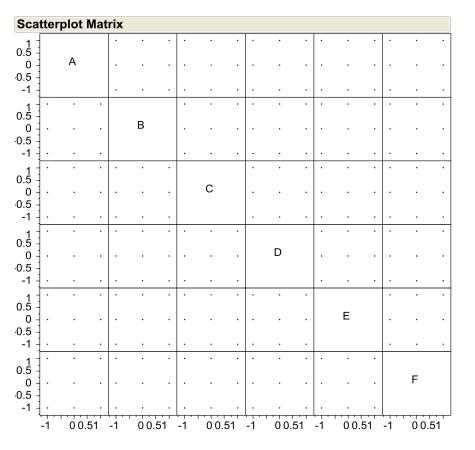
"These innovative projects convert carbon pollution from a climate threat to an economic resource," said Secretary Chu. "This is part of our broad commitment to unleash the American innovation machine and build the thriving, clean energy economy of the future."

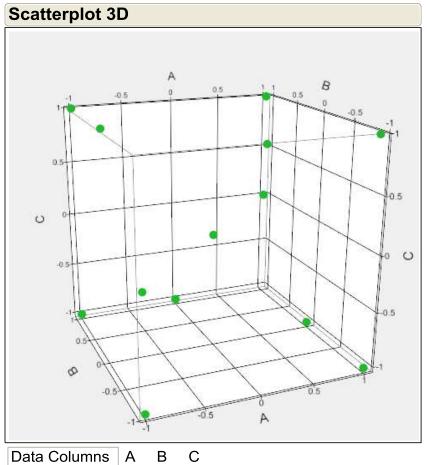






| ٩ | 23/1 💌 | $\sim$ |    |    |    |    |    |    |    |    |    |    |
|---|--------|--------|----|----|----|----|----|----|----|----|----|----|
| • |        | Time t | Α  | В  | С  | D  | E  | F  | G  | Н  | I  | J  |
| • | 1      | 1.38   | -1 | 1  | 1  | 0  | 1  | -1 | 1  | -1 | 1  | 1  |
| • | 2      | 6.44   | 1  | -1 | -1 | -1 | 1  | -1 | 1  | 1  | 0  | 1  |
|   | 3      | 5.96   | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | 0  |
| • | 4      | 4.34   | 0  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | -1 | -1 |
| • | 5      | 10.46  | -1 | -1 | -1 | -1 | -1 | 0  | 1  | -1 | -1 | -1 |
|   | 6      | 6.95   | -1 | -1 | 1  | -1 | 1  | -1 | -1 | 0  | -1 | -1 |
|   | 7      | 8.58   | 1  | 0  | -1 | 1  | 1  | -1 | -1 | -1 | 1  | -1 |
| • | 8      | 2.69   | 0  | 1  | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  |
| • | 9      | 4.3    | -1 | 1  | -1 | 1  | 0  | -1 | -1 | 1  | -1 | 1  |
| • | 10     | 0.77   | 1  | -1 | 1  | -1 | 0  | 1  | 1  | -1 | 1  | -1 |
| • | 11     | 2.87   | -1 | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 0  | -1 |
| • | 12     | 1.01   | 1  | 1  | 1  | 1  | 1  | 0  | -1 | 1  | 1  | 1  |
| • | 13     | 9.47   | -1 | -1 | -1 | 1  | 1  | 1  | 0  | -1 | 1  | 1  |
|   | 14     | 7.49   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| • | 15     | 0.98   | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | -1 | 0  |
| • | 16     | 0.86   | 1  | 1  | 1  | -1 | -1 | -1 | 0  | 1  | -1 | -1 |
| • | 17     | 1.25   | -1 | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | -1 |
| • | 18     | 1.03   | 1  | -1 | 1  | 1  | -1 | -1 | -1 | -1 | -1 | 1  |
| • | 19     | 1.07   | 1  | 1  | 0  | -1 | 1  | 1  | -1 | -1 | -1 | 1  |
|   | 20     | 7.33   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| • | 21     | 2.61   | 1  | -1 | -1 | 0  | -1 | 1  | -1 | 1  | -1 | -1 |
| • | 22     | 11.39  | -1 | -1 | 0  | 1  | -1 | -1 | 1  | 1  | 1  | -1 |
| • | 23     | 12.96  | -1 | 0  | 1  | -1 | -1 | 1  | 1  | 1  | -1 | 1  |
| • | 24     | 1.18   | 1  | 1  | -1 | 1  | -1 | 1  | 1  | 0  | 1  | 1  |

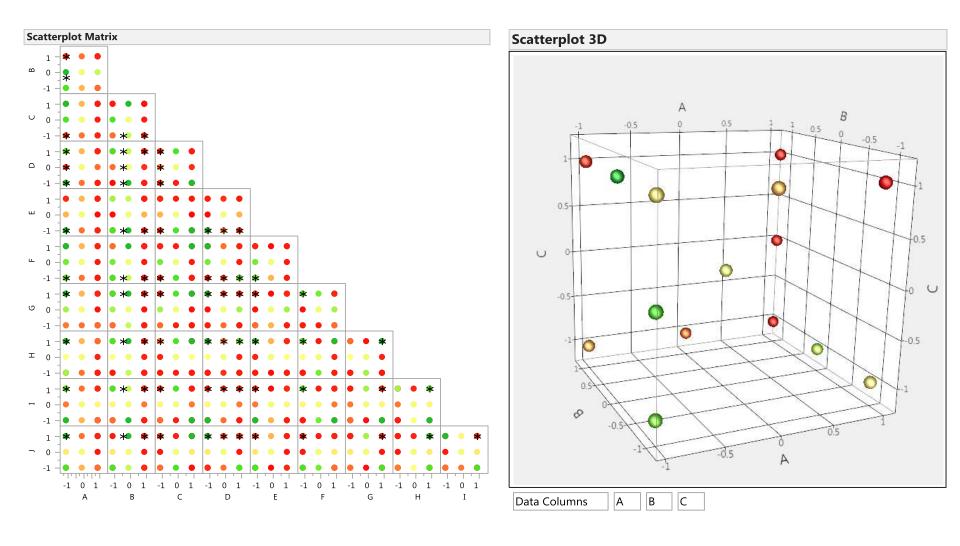

**Original design was for 11 variables with 23 unique trials** 


and the center point replicated once.





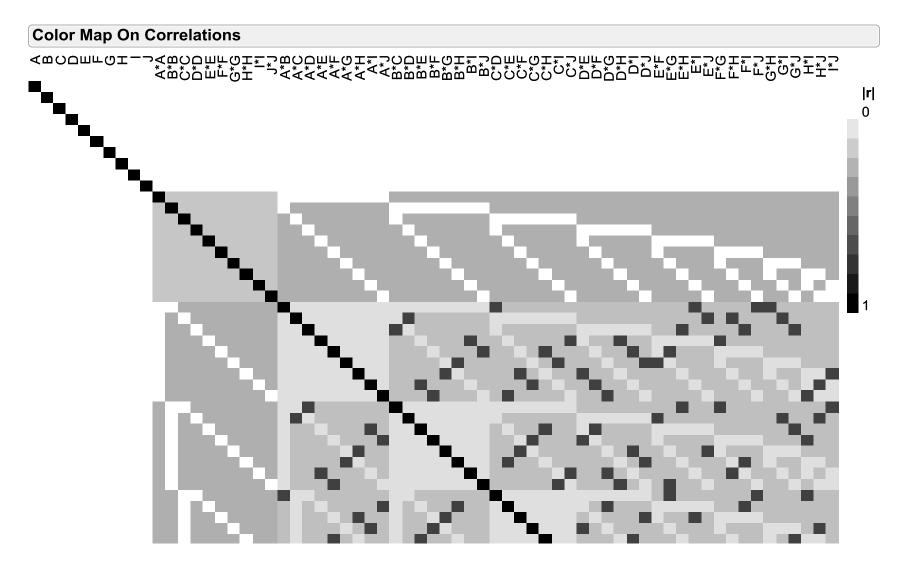
## 6-FACTOR DEFINITIVE SCREENING DESIGN, PROJECTION IN ALL 2-FACTOR COMBINATIONS (LEFT) AND PROJECTION IN FIRST THREE FACTORS (RIGHT)






Sas Heren

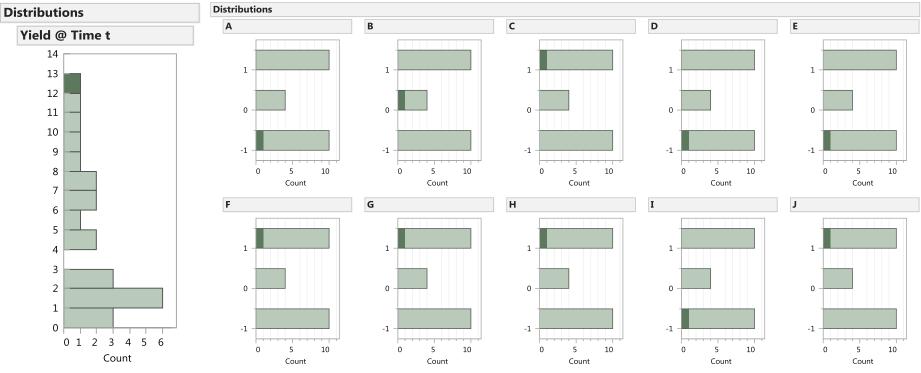



# **10-FACTOR DEFINITIVE SCREENING DESIGN, PROJECTION IN ALL 2-FACTOR COMBINATIONS (LEFT) AND PROJECTION IN FIRST THREE FACTORS (RIGHT)**



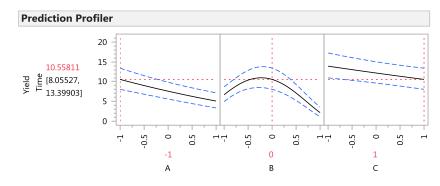


imn

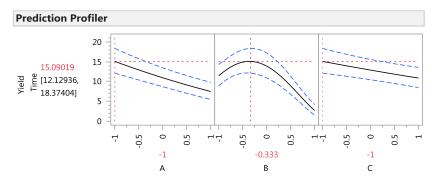

## COLOR MAP FOR 10-FACTOR, 21-TRIAL, DEFINITIVE SCREENING DESIGN







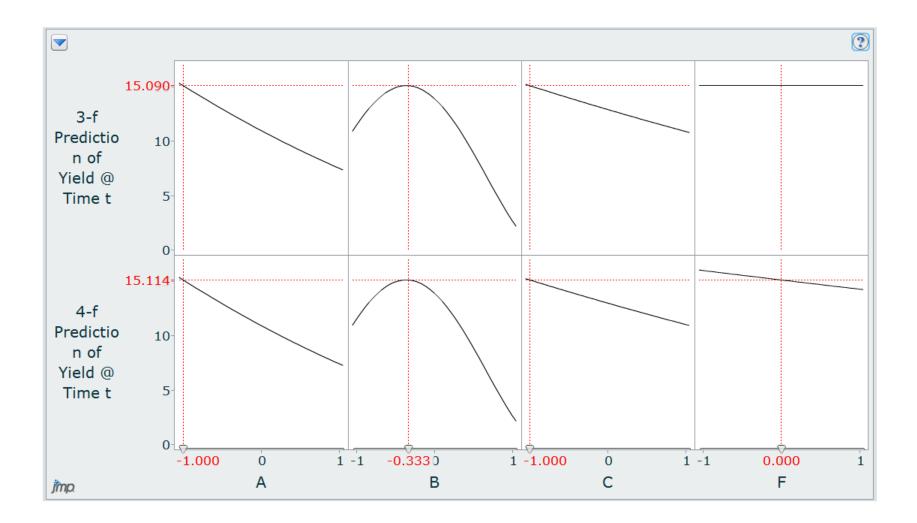



## **SETTINGS OF BEST OBSERVATION OF YIELD = 12.96**

## Prediction at settings of best observation



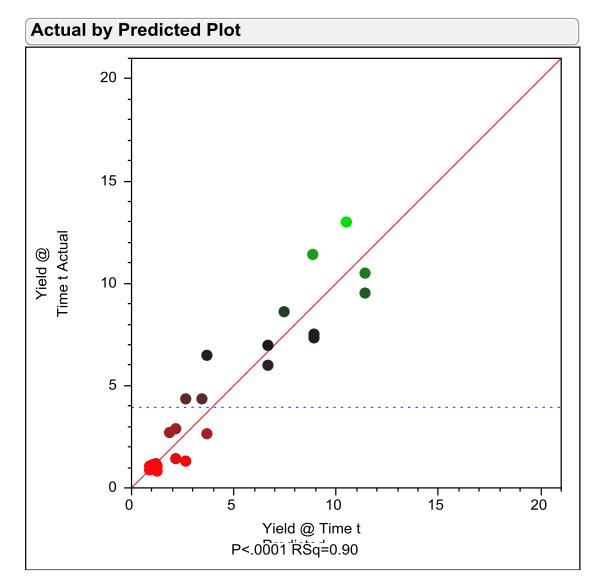

## Prediction at best settings - run this checkpoint







## **PREDICTING WITH BEST 3-FACTOR AND 4-FACTOR MODELS**





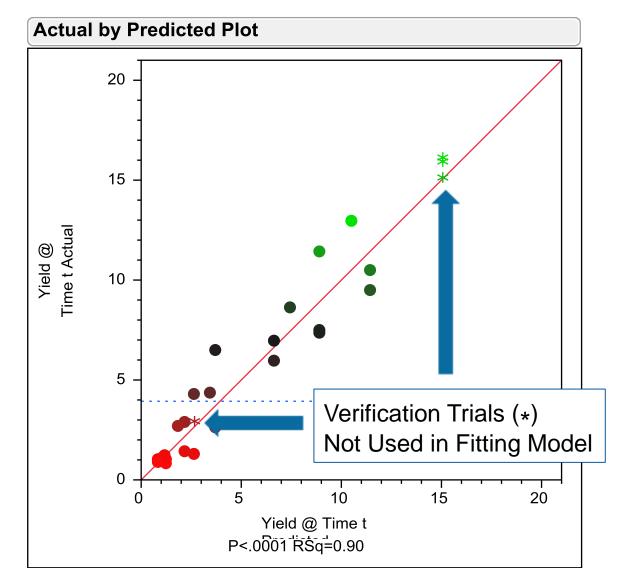





## ACTUAL BY PREDICTED PLOT FOR FINAL 3-FACTOR MODEL FOR THE 24 DESIGN TRIALS








| ٩ | 23/1 💌 | Yield @ |    |        |    |    |    |    |    |    |       |    |
|---|--------|---------|----|--------|----|----|----|----|----|----|-------|----|
|   |        | Time t  | Α  | в      | С  | D  | Е  | F  | G  | н  | - I - | J  |
| • | 1      | 1.38    | -1 | 1      | 1  | 0  | 1  | -1 | 1  | -1 | 1     | 1  |
|   | 2      | 6.44    | 1  | -1     | -1 | -1 | 1  | -1 | 1  | 1  | 0     | 1  |
|   | 3      | 5.96    | -1 | -1     | 1  | -1 | -1 | 1  | -1 | 1  | 1     | 0  |
| • | 4      | 4.34    | 0  | -1     | 1  | 1  | 1  | 1  | 1  | 1  | -1    | -1 |
| • | 5      | 10.46   | -1 | -1     | -1 | -1 | -1 | 0  | 1  | -1 | -1    | -1 |
|   | 6      | 6.95    | -1 | -1     | 1  | -1 | 1  | -1 | -1 | 0  | -1    | -1 |
|   | 7      | 8.58    | 1  | 0      | -1 | 1  | 1  | -1 | -1 | -1 | 1     | -1 |
| • | 8      | 2.69    | 0  | 1      | -1 | -1 | -1 | -1 | -1 | -1 | 1     | 1  |
| • | 9      | 4.3     | -1 | 1      | -1 | 1  | 0  | -1 | -1 | 1  | -1    | 1  |
| • | 10     | 0.77    | 1  | -1     | 1  | -1 | 0  | 1  | 1  | -1 | 1     | -1 |
| • | 11     | 2.87    | -1 | 1      | 1  | 1  | -1 | 1  | -1 | -1 | 0     | -1 |
| • | 12     | 1.01    | 1  | 1      | 1  | 1  | 1  | 0  | -1 | 1  | 1     | 1  |
| • | 13     | 9.47    | -1 | -1     | -1 | 1  | 1  | 1  | 0  | -1 | 1     | 1  |
|   | 14     | 7.49    | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  |
| • | 15     | 0.98    | 1  | 1      | -1 | 1  | 1  | -1 | 1  | -1 | -1    | 0  |
| • | 16     | 0.86    | 1  | 1      | 1  | -1 | -1 | -1 | 0  | 1  | -1    | -1 |
| • | 17     | 1.25    | -1 | 1      | -1 | -1 | 1  | 1  | 1  | 1  | 1     | -1 |
| • | 18     | 1.03    | 1  | -1     | 1  | 1  | -1 | -1 | -1 | -1 | -1    | 1  |
| • | 19     | 1.07    | 1  | 1      | 0  | -1 | 1  | 1  | -1 | -1 | -1    | 1  |
| • | 20     | 7.33    | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  |
| • | 21     | 2.61    | 1  | -1     | -1 | 0  | -1 | 1  | -1 | 1  | -1    | -1 |
| • | 22     | 11.39   | -1 | -1     | 0  | 1  | -1 | -1 | 1  | 1  | 1     | -1 |
| • | 23     | 12.96   | -1 | 0      | 1  | -1 | -1 | 1  | 1  | 1  | -1    | 1  |
| • | 24     | 1.18    | 1  | 1      | -1 | 1  | -1 | 1  | 1  | 0  | 1     | 1  |
|   | S 25   | 15.93   | -1 | -0.333 | -1 | 1  | -1 | -1 | 1  | 1  | 1     | 1  |
| * | S 26   | 2.9     | -1 | 1      | -1 | 1  | -1 | -1 | 1  | 1  | 1     | 1  |
|   | S 27   | 16.16   | -1 | -0.333 | -1 | -1 | -1 | -1 | 1  | 1  | 1     | 1  |
| * | S 28   | 15.1    | -1 | -0.333 | -1 | 0  | -1 | -1 | 1  | 1  | 1     | 1  |





## ACTUAL BY PREDICTED PLOT FOR FINAL 3-FACTOR MODEL FOR THE 24 DESIGN TRIALS AND 4 VERIFICATION TRIALS



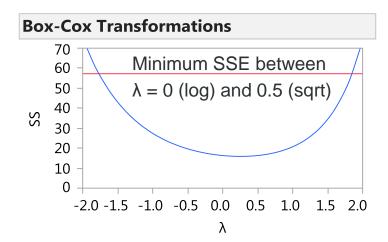




## ANALYSIS STRATEGIES

- Conservative treat designs like traditional screening
  - Fit main effects only (DSD is orthogonal in main effects)
  - Fit main effects + squared effects (DSD is orthogonal in squared terms too)
  - Use factor sparsity and effect heredity principles to propose final models
- Aggressive use stepwise regression to pick best subsets of terms
  - Use AICc and BIC stopping criteria and pick "simpler model"
  - Use checkpoints validation R-square as stopping criteria to pick model
  - Use transformation to make error more uniform
    - » square-root identified in plot of SSE vs.  $\lambda$  for Box-Cox transformation (i.e.  $\lambda \approx 0.5$ )
  - Fit ALL possible models



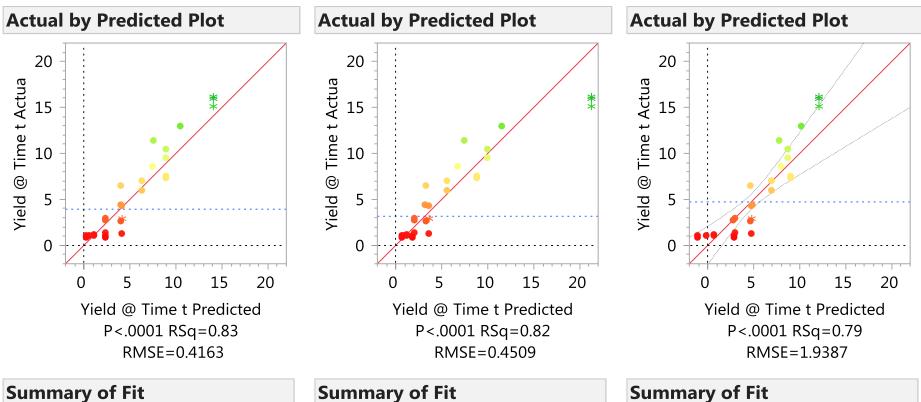




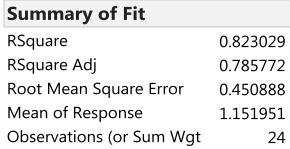

## RANKED PARAMETER ESTIMATES

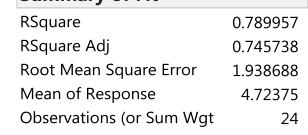
## 10 Main Effects (left) & 10 ME + 10 Squared Effects (right)

| Sorted Parameter Estimates |      |           |           |         |  |          |  |
|----------------------------|------|-----------|-----------|---------|--|----------|--|
|                            | Term | Estimate  | Std Error | t Ratio |  | Prob> t  |  |
|                            | А    | -2.023428 | 0.791305  | -2.56   |  | 0.0239 * |  |
|                            | В    | -2.030884 | 0.815352  | -2.49   |  | 0.0271 * |  |
|                            | С    | -0.844283 | 0.791305  | -1.07   |  | 0.3054   |  |
|                            | F    | -0.453239 | 0.791305  | -0.57   |  | 0.5766   |  |
|                            | J    | 0.3462584 | 0.815352  | 0.42    |  | 0.6780   |  |
|                            | G    | 0.3230058 | 0.799335  | 0.40    |  | 0.6927   |  |
|                            | Н    | 0.2867159 | 0.788411  | 0.36    |  | 0.7220   |  |
|                            | Е    | -0.287384 | 0.791305  | -0.36   |  | 0.7223   |  |
|                            | Ι    | -0.155204 | 0.799335  | -0.19   |  | 0.8490   |  |
|                            | D    | 0.1332841 | 0.788411  | 0.17    |  | 0.8684   |  |
|                            |      |           |           |         |  |          |  |




| Term | Estimate  | Std Error | t Ratio | Prob> t  |
|------|-----------|-----------|---------|----------|
| B*B  | -6.318587 | 1.774188  | -3.56   | 0.0378 * |
| A    | -2.023428 | 0.607403  | -3.33   | 0.0447 * |
| В    | -2.030884 | 0.625861  | -3.24   | 0.0477 * |
| С    | -0.844283 | 0.607403  | -1.39   | 0.2587   |
| D*D  | 2.456413  | 1.774188  | 1.38    | 0.2602   |
| E*E  | 1.916413  | 1.774188  | 1.08    | 0.3592   |
| C*C  | -1.778587 | 1.774188  | -1.00   | 0.3900   |
| F    | -0.453239 | 0.607403  | -0.75   | 0.5097   |
| F*F  | -1.283587 | 1.774188  | -0.72   | 0.5217   |
| J    | 0.3462584 | 0.625861  | 0.55    | 0.6186   |
| J*J  | 0.981413  | 1.774188  | 0.55    | 0.6187   |
| A*A  | 0.936413  | 1.774188  | 0.53    | 0.6342   |
| G    | 0.3230058 | 0.613566  | 0.53    | 0.6350   |
| Н    | 0.2867159 | 0.605181  | 0.47    | 0.6680   |
| E    | -0.287384 | 0.607403  | -0.47   | 0.6684   |
| G*G  | -0.713587 | 1.774188  | -0.40   | 0.7145   |
| I    | -0.155204 | 0.613566  | -0.25   | 0.8166   |
| D    | 0.1332841 | 0.605181  | 0.22    | 0.8398   |
| H*H  | 0.386413  | 1.774188  | 0.22    | 0.8416   |
| I*I  | -0.203587 | 1.774188  | -0.11   | 0.9159   |



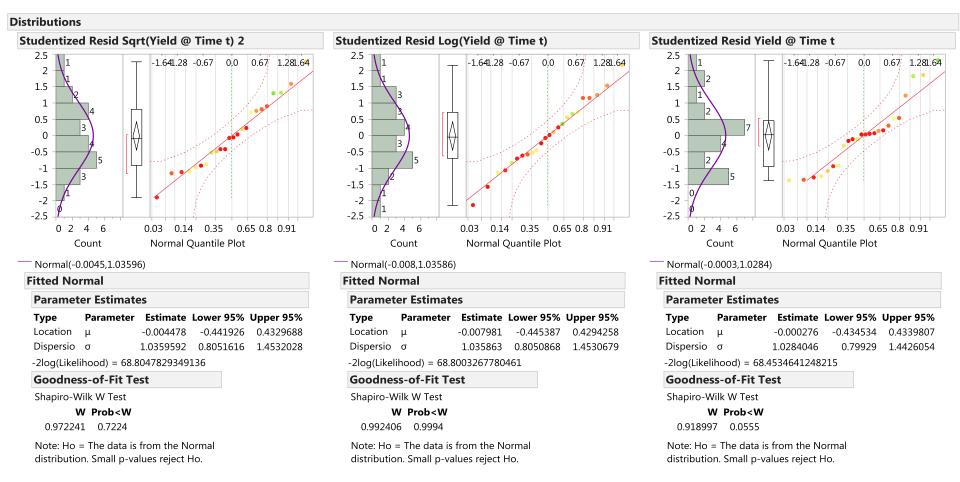




## TRANSFORMATIONS SQRT, LOG, & NONE



| -                        |          |
|--------------------------|----------|
| RSquare                  | 0.825967 |
| RSquare Adj              | 0.789328 |
| Root Mean Square Error   | 0.416337 |
| Mean of Response         | 1.983747 |
| Observations (or Sum Wgt | 24       |
|                          |          |



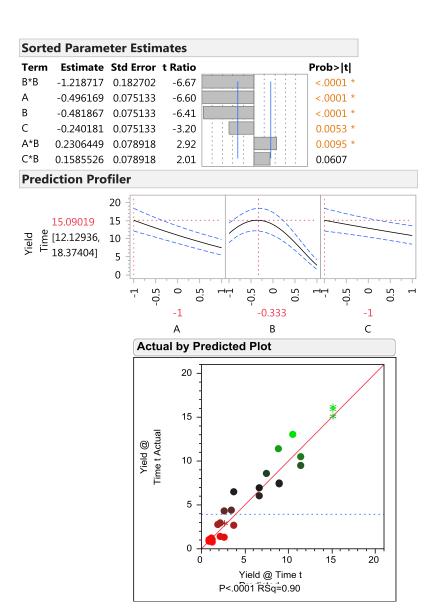






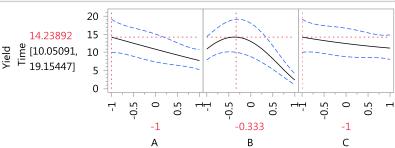

## PLOTS OF RESIDUALS FOR DIFFERENT TRANSFORMATIONS

Model fit was reduced quadratic in A, B & C: Yield = Intercept + A + B + C + B\*B + A\*B + B\*C

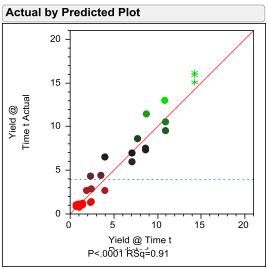



# jmp

Copyright © 2013, SAS Institute Inc. All rights reserved

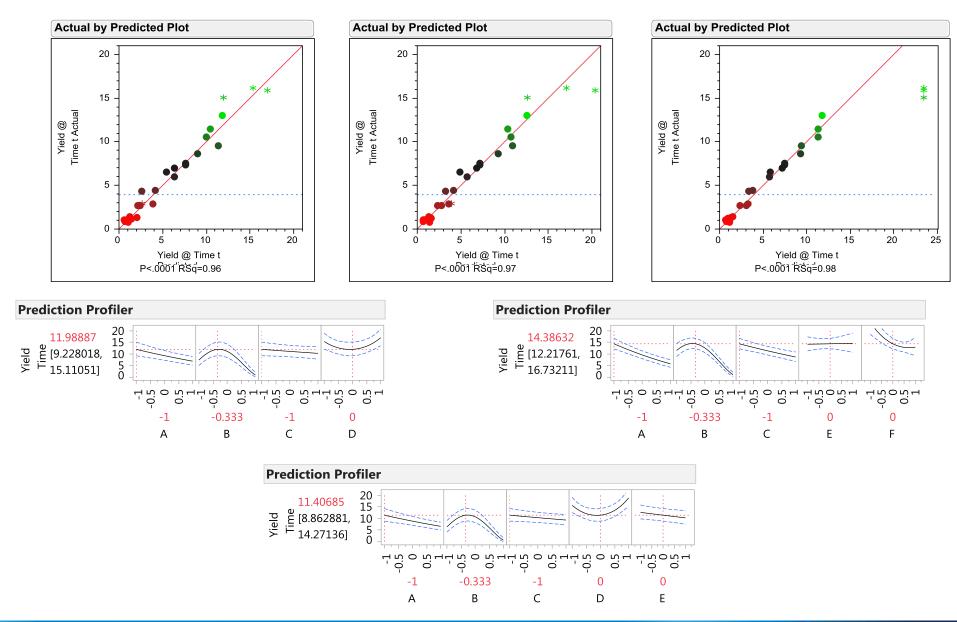

## **STEPWISE 3-FACTOR MODEL (7 TERMS) - LEFT FULL QUADRATIC 3-FACTOR MODEL (10 TERMS) - RIGHT**

**Sorted Parameter Estimates** 




| Term | Estimate  | Std Error | t Ratio | <br>Prob> t |
|------|-----------|-----------|---------|-------------|
| A    | -0.496169 | 0.080197  | -6.19   | <.0001 *    |
| В    | -0.481867 | 0.080197  | -6.01   | <.0001 *    |
| B*B  | -1.181941 | 0.233332  | -5.07   | 0.0002 *    |
| С    | -0.240181 | 0.080197  | -2.99   | 0.0096 *    |
| A*B  | 0.2339616 | 0.087698  | 2.67    | 0.0184 *    |
| C*B  | 0.1610152 | 0.087698  | 1.84    | 0.0877      |
| A*C  | -0.08124  | 0.087698  | -0.93   | 0.3700      |
| C*C  | 0.0307046 | 0.233332  | 0.13    | 0.8972      |
| A*A  | -0.021309 | 0.233332  | -0.09   | 0.9285      |

**Prediction Profiler** 




Sas HENRE





## **STEPWISE MODELS: 4-FACTOR (12 TERMS), 5-FACTOR (13 TERMS), 6-FACTOR (15 TERMS)**

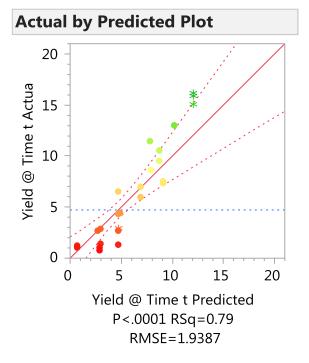




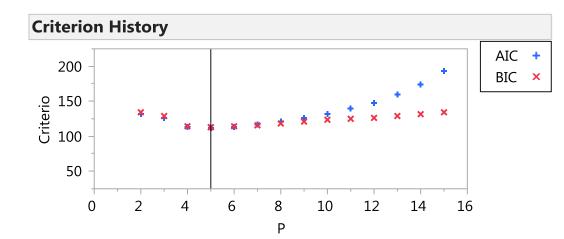


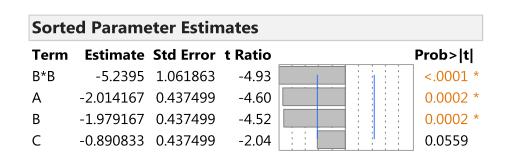
#### AGGRESSIVE ANALYSES

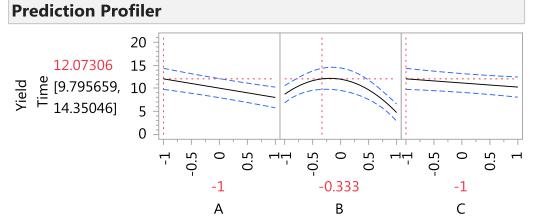
- Stepwise using Main Effects and Squared Effects for all factors
  - Will show just the use of AICc & BIC stopping criteria all stepwise approaches yield very similar results
- Stepwise using full 10-factor, 66-term quadratic model
  - 1 intercept + 10 ME + 10 SQ + 45 2FI (2-factor interactions)
  - Use AICc & BIC stopping criteria and pick "simpler model" Occam's razor
  - Use max K-Fold R-square as stopping rule to pick model (no checkpoints)
  - Use max validation R-square for checkpoints as stopping rule to pick model
  - Fit ALL possible models







21 TERMS, ME + SQ


#### RAW RESPONSE VALUES USED

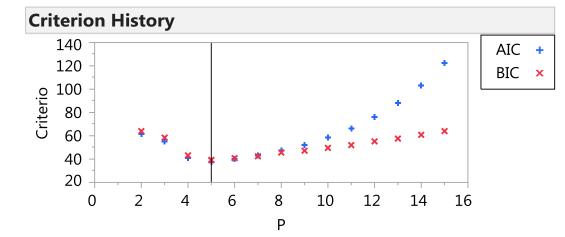


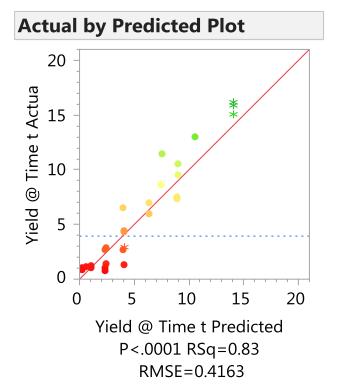
*î*mp

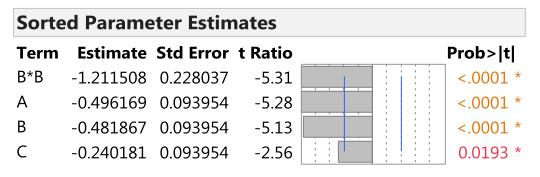




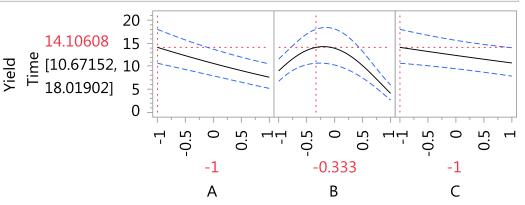






Sas Hower




21 TERMS, ME + SQ

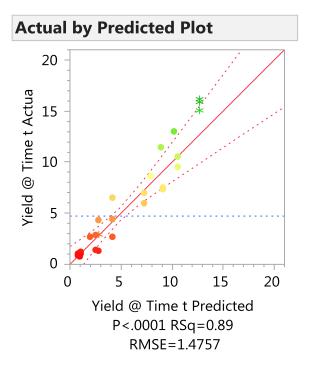

## TRANSFORMED VALUES USED

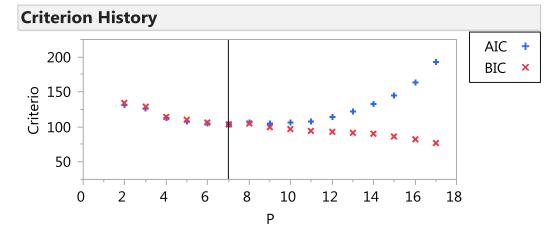






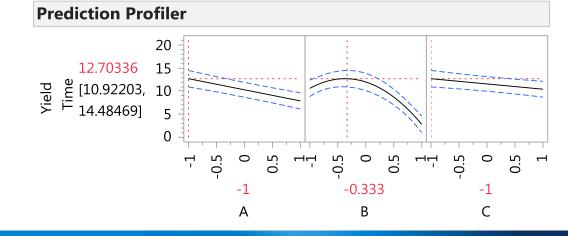
#### **Prediction Profiler**





Sas Hower



#### **66 TERM QUADRATIC**

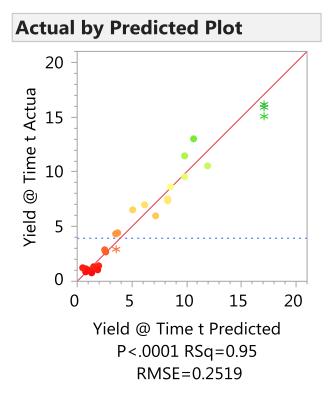

#### RAW RESPONSE VALUES USED

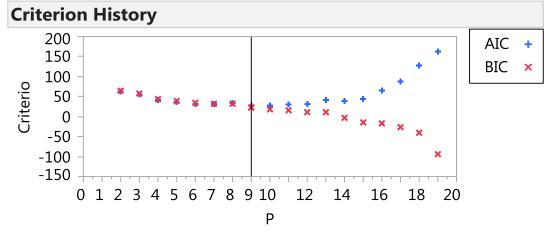




#### **Sorted Parameter Estimates**







Sas Howen



#### **66 TERM QUADRATIC**

#### TRANSFORMED VALUES USED



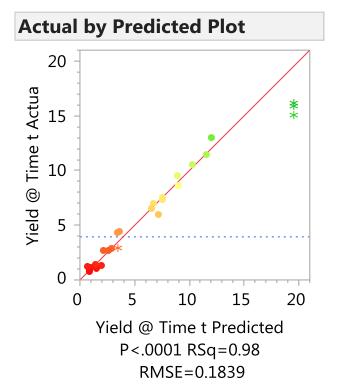


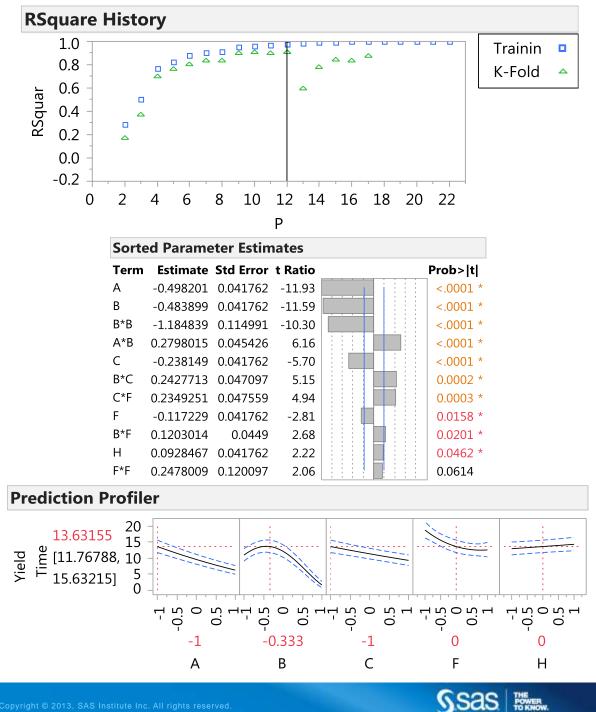

#### **Sorted Parameter Estimates**

| Term | Estimate  | Std Error | t Ratio | <br>Prob> t |
|------|-----------|-----------|---------|-------------|
| А    | -0.505343 | 0.057053  | -8.86   | <.0001 *    |
| В    | -0.491041 | 0.057053  | -8.61   | <.0001 *    |
| B*B  | -1.111685 | 0.141981  | -7.83   | <.0001 *    |
| A*B  | 0.253637  | 0.060121  | 4.22    | 0.0007 *    |
| С    | -0.231007 | 0.057053  | -4.05   | 0.0010 *    |
| B*C  | 0.2053297 | 0.061367  | 3.35    | 0.0044 *    |
| C*F  | 0.2093075 | 0.063209  | 3.31    | 0.0047 *    |
| F    | -0.110087 | 0.057053  | -1.93   | 0.0728      |

#### **Prediction Profiler**




Sas Howen

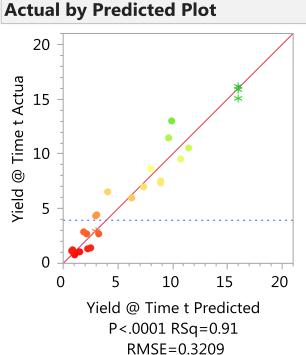


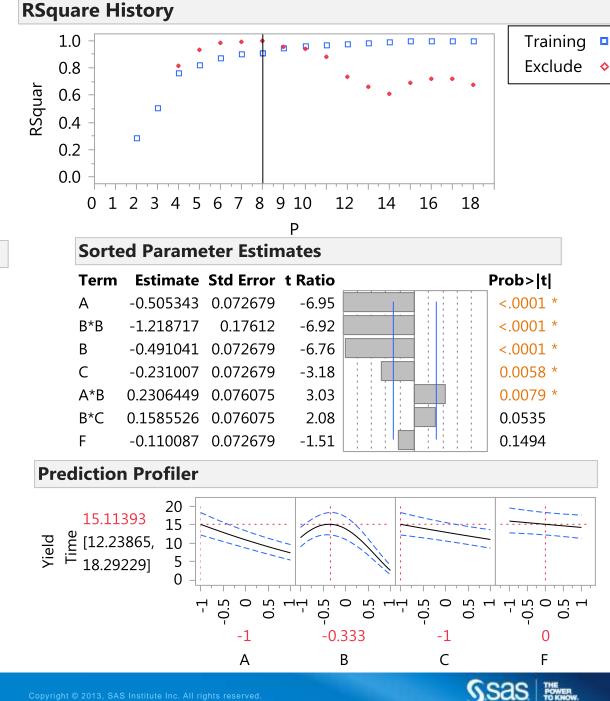



#### **66 TERM QUADRATIC**

#### TRANSFORMED VALUES USED






## **USE MAX VALIDATION R-SQUARE FOR 4 CHECKPOINTS AS STOPPING RULE**

**66 TERM QUADRATIC** 

#### TRANSFORMED VALUES USED







#### FIT ALL POSSIBLE MODELS UP TO 8 TERMS

| • 1-term                                | А                                                         |
|-----------------------------------------|-----------------------------------------------------------|
| • 2-term                                | B, B*B                                                    |
| • 3-term                                | A, B, B*B                                                 |
| • 4-term                                | A, B, C,                                                  |
|                                         | B*B                                                       |
| • 5-term                                | A, B, C,                                                  |
|                                         | A*B, B*B                                                  |
|                                         | ,                                                         |
| • 6-term                                | A, B, C,                                                  |
| • 6-term                                |                                                           |
| <ul><li>6-term</li><li>7-term</li></ul> | A, B, C,                                                  |
|                                         | A, B, C,<br>A*B, B*B, B*C                                 |
|                                         | A, B, C,<br>A*B, B*B, B*C<br>A, B, C, G,                  |
| • 7-term                                | A, B, C,<br>A*B, B*B, B*C<br>A, B, C, G,<br>A*B, B*B, B*G |

| CO2 Capture Process - Fit Stepwise 2 - JMP Pro                                          |          |        |               |                                         | _          |                        |
|-----------------------------------------------------------------------------------------|----------|--------|---------------|-----------------------------------------|------------|------------------------|
| Stepwise Fit for Sqrt(Yield @ Time t)                                                   | )        |        |               |                                         |            |                        |
| All Possible Models                                                                     |          |        |               |                                         |            |                        |
| Model                                                                                   | N        |        | RSquare       | RMSE                                    | AICc       | BIC                    |
| B,F,H                                                                                   |          | 3      | 0.2934        | - 1707.7333                             | 12022672   | 69.9628                |
| A,E,(E0.1429)*(E0.1429)                                                                 | 1 torm   | 3      |               |                                         |            | 70.0025                |
|                                                                                         | 4-term   | 4      | 1000          |                                         |            | 39.5102                |
| A,B,A*B,B*B                                                                             |          | 4      | 0.8169        |                                         |            | 40.7262                |
| A,B,F,B*B                                                                               |          | 4      | 0.7835        | 0.4644                                  | 42.0270    | 44.7542 ©              |
| CO2 Capture Process - Fit Stepwise 2 - JMP Pro                                          |          | -      |               |                                         |            | 100 No. 10             |
| • Stepwise Fit for Sqrt(Yield @ Time t                                                  | )        |        |               |                                         |            |                        |
| All Possible Models                                                                     |          |        |               |                                         |            |                        |
| Model                                                                                   | h        | lumber | RSquare       | RMSE                                    | AICc       | BIC C                  |
| A,B,H,(H-0.14286)*(H-0.14286)                                                           |          | 4      | 0.5358        | 0.6800                                  | 60.9300    | 63.0571 0              |
| A,B,D,A*A                                                                               | _        | 4      | 0.5352        | 0.6804                                  | 60.9587    | 63.0858                |
| A,B,C,A*B,B*B                                                                           | 5-term   | 5      | 0.8768        | 0.3599                                  | 33,1552    | 34.4016                |
| A,B,C,B*B,B*C                                                                           |          | 5      | 0.8504        | 0.3966                                  | 37.8124    | 39.0588                |
| A.B.C.F.B*B                                                                             |          | 5      | 0.8385        | 0.4121                                  | 39.6548    | 40.9011                |
| CO2 Capture Process - Fit Stepwise 2 - JMP Pro  • Stepwise Fit for Sqrt(Yield @ Time t) | )        | -      |               |                                         |            |                        |
| All Possible Models                                                                     |          |        |               |                                         |            |                        |
| Model                                                                                   | N        | Number | RSquare       | RMSE                                    | AICc       | BIC C                  |
| A,B,E,A*B,A*(E0.1429)                                                                   |          | 5      | 0.6402        | - 2022202                               | 1000       | 60.1175                |
| A,B,E,F,A*(E0.1429)                                                                     | 6-term   | 5      | 0.6401        |                                         |            | 60.1277                |
| Lender of other                                                                         | 0-lenn   | б      | Cherry Street | 100000000000000000000000000000000000000 | 1000000000 | 32.4667 *              |
| A,B,C,F,A*B,B*B                                                                         |          | 6      | 0.8893        |                                         |            | 35.0150                |
| A,B,C,H,A*B,B*B                                                                         |          | 6      | 0.8840        | 0.3593                                  | 36.3016    | 36,1261                |
| CO2 Capture Process - Fit Stepwise 2 - JMP Pro                                          |          |        |               |                                         |            |                        |
| • Stepwise Fit for Sqrt(Yield @ Time t                                                  | )        |        |               |                                         |            |                        |
| All Possible Models                                                                     |          |        |               |                                         |            |                        |
| Model                                                                                   | N        |        | RSquare       | RMSE                                    | AICc       | BIC O                  |
| A,B,C,D,B*B,A*D                                                                         |          | 6      | 0.8348        | - 2011000                               |            | 44.6185                |
| A,B,E,F,A*B,B*B                                                                         | 7 10 100 | 6      |               |                                         |            | 44.6331                |
|                                                                                         | 7-term   | 7      | 0.9239        |                                         |            | 29.1933                |
|                                                                                         |          | 100    |               |                                         |            |                        |
| A,B,C,E,B*B,A*(E0.1429),B*(E0.1429)<br>A,B,C,F,A*B,B*B,B*C                              |          | 7      | 0.9145        |                                         |            | 31.9835 C<br>32.4287 C |

SSAS HERE



#### ALL ANALYSES RANK FACTORS A, B & C AS TOP 3

#### FACTOR F APPEARS TO BE MOST LIKELY FOURTH FACTOR

- Linear terms only fourth factor is F
- Linear + Squared terms fourth factor is D
- Stepwise with min AICc stopping rule fourth factor is F
- Stepwise with max K-Fold R-Square stopping rule fourth factor is F
- Stepwise with max Validation R-Square as stopping rule fourth factor is F
- All possible models fourth factor is G
- When D & F are in same 5-factor (with A, B, & C) stepwise model, D drops out
- When G & F are in same 5-factor (with A, B, & C) stepwise model, G drops out
- When D & G are in same 5-factor (with A, B, & C) stepwise model, both drop out
- There is an important difference between saying, "Factor F has no effect." and, "Given the amount of data taken an effect for factor F was not detected."
- Augmenting design to support 6-factor quadratic model in A, B, C, D, F & G will
  - help resolve the relative contributions of D, F & G
  - increase the power for all but especially the squared terms







#### IF MORE THAN A FEW FACTORS ARE SIGNIFICANT, THEN AUGMENT DESIGN TO SUPPORT 2<sup>ND</sup> ORDER MODEL

| 0. | A  | в  | c  | D  | F  | G  | Block | Yield @<br>Time t |
|----|----|----|----|----|----|----|-------|-------------------|
| 14 | 0  | 0  | 0  | 0  | 0  | 0  | 1     | 7.49              |
| 15 | 1  | 1  | -1 | 1  | -1 | 1  | 1     | 0.98              |
| 16 | 1  | 1  | 1  | -1 | -1 | 0  | 1     | 0.86              |
| 17 | -1 | 1  | -1 | -1 | 1  | 1  | 1     | 1.25              |
| 18 | 1  | -1 | 1  | 1  | -1 | -1 | 1     | 1.03              |
| 19 | 1  | 1  | 0  | -1 | 1  | -1 | 1     | 1.07              |
| 20 | 0  | 0  | 0  | 0  | 0  | 0  | 1     | 7.33              |
| 21 | 1  | -1 | -1 | 0  | 1  | -1 | 1     | 2.61              |
| 22 | -1 | -1 | 0  | 1  | -1 | 1  | 1     | 11.39             |
| 23 | -1 | 0  | 1  | -1 | 1  | 1  | 1     | 12.96             |
| 24 | 1  | 1  | -1 | 1  | 1  | 1  | 1     | 1.18              |
| 25 | 1  | 0  | 1  | 1  | -1 | 1  | 2     | 12                |
| 26 | 1  | -1 | 0  | 1  | 1  | 0  | 2     | 1                 |
| 27 | 1  | -1 | -1 | 1  | 0  | 1  | 2     | 1                 |
| 28 | 1  | -1 | 0  | -1 | 0  | -1 | 2     |                   |
| 29 | 1  | 0  | -1 | -1 | 1  | 0  | 2     | 10                |
| 30 | 1  | 1  | 0  | -1 | 0  | 1  | 2     |                   |
| 31 | 1  | 0  | 1  | 0  | 1  | -1 | 2     | 25                |
| 32 | -1 | -1 | 0  | 0  | 1  | 1  | 2     | 3                 |
| 33 | 0  | 0  | 1  | 1  | -1 | -1 | 2     | 19                |
| 34 | -1 | -1 | 1  | 0  | 0  | 0  | 2     | 100               |
| 35 | 0  | 1  | 1  | 0  | 1  | 0  | 2     |                   |
| 36 | 0  | 1  | -1 | 1  | 1  | -1 | 2     | 1                 |

NOTE: First 13 rows of original design are not shown.

These 12 trials added onto original 24 trials to support full quadratic model in 6 most important factors plus a block effect between original and augmented trials





#### **Power Analysis**

Significance Level 0.05

Anticipated RMSE

A\*F

A\*G B\*C

B\*D

G\*G

#### **POWER FOR SQUARED TERMS IN 2<sup>ND</sup> ORDER MODEL IS INCREASED TO NEAR THAT OF 6-FACTOR RSM DESIGNS**

| -         | Anticipated  |         |  |
|-----------|--------------|---------|--|
| Parameter | Coefficients | Power   |  |
| Intercept | 1            | 0.273   |  |
| Block     | 1            | 0.983   |  |
| А         | 1            | 0.965   |  |
| В         | -1           | 0.966   |  |
| С         | 1            | 0.976   |  |
| D         | -1           | 0.969   |  |
| F         | 1            | 0.975   |  |
| G         | -1           | 0.961   |  |
| A         | -            | a a a = |  |

1

A\*B 1 0.887 A\*C -1 0.881 A\*D 1 0.825 Power Analysis

| -1 | 0.915 | i ower Anarysis    |      |
|----|-------|--------------------|------|
| _  |       | Significance Level | 0.05 |
| -1 | 0.728 | Anticipated RMSE   | 1    |

1 0.853

-1 0.347

Anticipated

|     | -  | 0.000 |           | Anticipated  |       |
|-----|----|-------|-----------|--------------|-------|
| B*F | -1 | 0.859 | Parameter | Coefficients | Power |
| B*G | 1  | 0.724 | Intercept | 1            | 0.364 |
| C*D | -1 | 0.872 | А         | 1            | 0.998 |
| C*F | 1  | 0.838 | В         | -1           | 0.998 |
| C*G | -1 | 0.778 | С         | 1            | 0.998 |
| D*F | 1  | 0.847 | D         | -1           | 0.998 |
| D*G | -1 | 0.838 | F         | 1            | 0.998 |
| F*G | 1  | 0.86  | G         | -1           | 0.998 |
| A*A | 1  | 0.299 | A*A       | 1            | 0.527 |
| B*B | -1 | 0.361 | B*B       | -1           | 0.599 |
| C*C | 1  | 0.362 | C*C       | 1            | 0.582 |
| D*D | -1 | 0.309 | D*D       | -1           | 0.541 |
| F*F | 1  | 0.384 | F*F       | 1            | 0.573 |

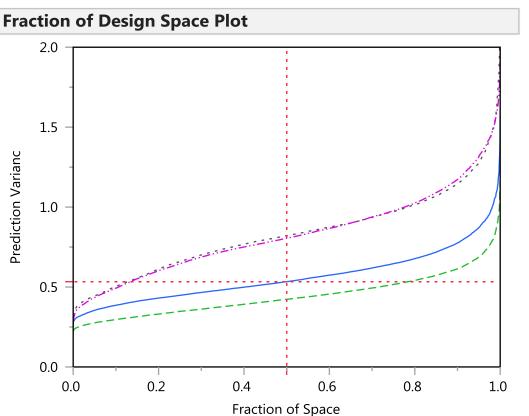
G\*G

| 0. | A  | в  | c  | D  | F  | G  | Block | Yield @<br>Time t |
|----|----|----|----|----|----|----|-------|-------------------|
| 14 | 0  | 0  | 0  | 0  | 0  | 0  | 1     | 7.49              |
| 15 | 1  | 1  | -1 | 1  | -1 | 1  | 1     | 0.98              |
| 16 | 1  | 1  | 1  | -1 | -1 | 0  | 1     | 0.86              |
| 17 | -1 | 1  | -1 | -1 | 1  | 1  | 1     | 1.25              |
| 18 | 1  | -1 | 1  | 1  | -1 | -1 | 1     | 1.03              |
| 19 | 1  | 1  | 0  | -1 | 1  | -1 | 1     | 1.07              |
| 20 | 0  | 0  | 0  | 0  | 0  | 0  | 1     | 7.33              |
| 21 | 1  | -1 | -1 | 0  | 1  | -1 | 1     | 2.61              |
| 22 | -1 | -1 | 0  | 1  | -1 | 1  | 1     | 11.39             |
| 23 | -1 | 0  | 1  | -1 | 1  | 1  | 1     | 12.96             |
| 24 | 1  | 1  | -1 | 1  | 1  | 1  | 1     | 1.18              |
| 25 | 1  | 0  | 1  | 1  | -1 | 1  | 2     | 19                |
| 26 | 1  | -1 | 0  | 1  | 1  | 0  | 2     | 3                 |
| 27 | 1  | -1 | -1 | 1  | 0  | 1  | 2     | 1                 |
| 28 | 1  | -1 | 0  | -1 | 0  | -1 | 2     |                   |
| 29 | 1  | 0  | -1 | -1 | 1  | 0  | 2     | 10                |
| 30 | 1  | 1  | 0  | -1 | 0  | 1  | 2     | 9                 |
| 31 | 1  | 0  | 1  | 0  | 1  | -1 | 2     | 26                |
| 32 | -1 | -1 | 0  | 0  | 1  | 1  | 2     |                   |
| 33 | 0  | 0  | 1  | 1  | -1 | -1 | 2     | 9                 |
| 34 | -1 | -1 | 1  | 0  | 0  | 0  | 2     |                   |
| 35 | 0  | 1  | 1  | 0  | 1  | 0  | 2     | 0                 |
| 36 | 0  | 1  | -1 | 1  | 1  | -1 | 2     |                   |



-1 0.568




#### COMPARE AUGMENTED DESIGNS

TOP: 10-FACTOR FRACTIONAL FACTORIAL + C.P. AUGMENTED TO SUPPORT FULL QUADRATIC MODEL IN 6 FACTORS 33 + 9 = 42 TOTAL TRIALS

UPPER MIDDLE: 10-FACTOR PLACKET-BURMAN + C.P. AUGMENTED TO SUPPORT FULL QUADRATIC MODEL IN 6 FACTORS 25 + 11 = 36 TOTAL TRIALS

LOWER MIDDLE: 10-FACTOR DEFINITIVE SCREENING AUGMENTED TO SUPPORT FULL QUADRATIC MODEL IN 6 FACTORS 21 + 15 = 36 TOTAL TRIALS

BOTTOM: 6-FACTOR CUSTOM DOE FOR FULL RSM MODEL 34 TOTAL TRIALS



| Design Diagnostics             |          |
|--------------------------------|----------|
| I Optimal Design               |          |
| DEfficiency                    | 40.729   |
| G Efficiency                   | 56.09719 |
| A Efficiency                   | 12.41717 |
| Average Variance of Prediction | 0.82307  |
| Design Creation Time (seconds) | 0.05     |
|                                |          |

#### **Design Diagnostics**

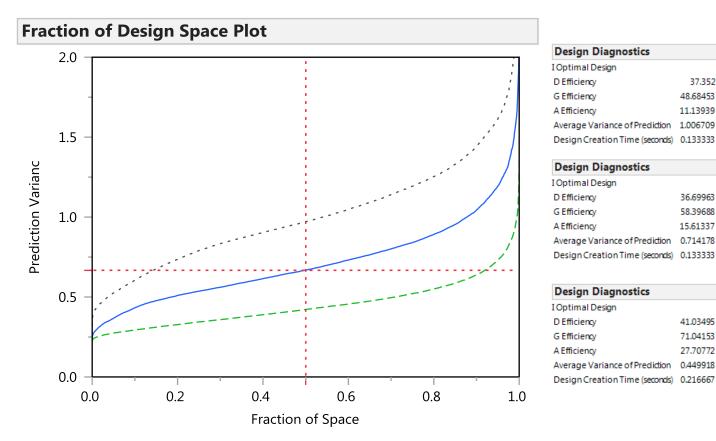
| I Optimal Design               |          |
|--------------------------------|----------|
| D Efficiency                   | 38.46605 |
| G Efficiency                   | 54.33992 |
| A Efficiency                   | 14.61968 |
| Average Variance of Prediction | 0.833744 |
| Design Creation Time (seconds) | 0.05     |

#### **Design Diagnostics**

| 42.15506 |
|----------|
| 69.61262 |
| 22.27027 |
| 0.563765 |
| 0.066667 |
|          |

| Design Diagnostics             |          |  |  |  |  |
|--------------------------------|----------|--|--|--|--|
| I Optimal Design               |          |  |  |  |  |
| D Efficiency                   | 42.94028 |  |  |  |  |
| G Efficiency                   | 75.52931 |  |  |  |  |
| A Efficiency                   | 27.20305 |  |  |  |  |
| Average Variance of Prediction | 0.44424  |  |  |  |  |
| Design Creation Time (seconds) | 0.066667 |  |  |  |  |

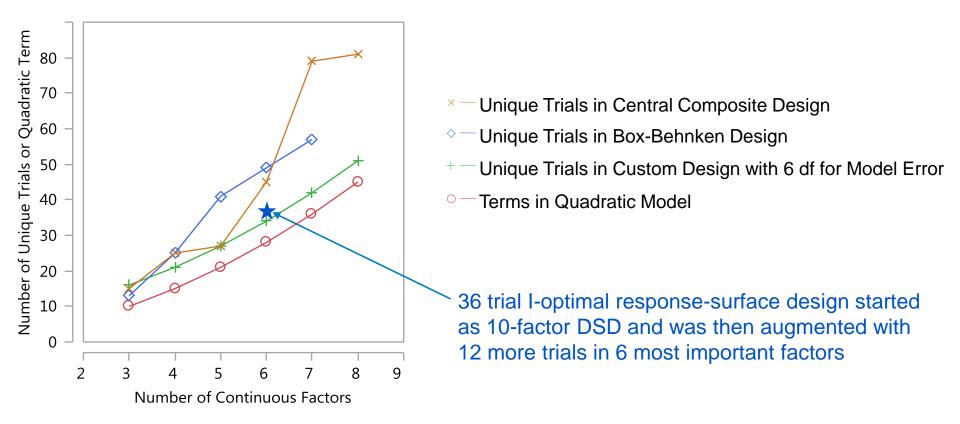





#### COMPARE AUGMENTED DESIGNS

TOP: 14-FACTOR FRACTIONAL FACTORIAL + C.P. AUGMENTED TO SUPPORT FULL QUADRATIC MODEL IN 7 FACTORS 33 + 13 = 46 TOTAL TRIALS

MIDDLE: 14-FACTOR DEFINITIVE SCREENING AUGMENTED TO SUPPORT FULL QUADRATIC MODEL IN 7 FACTORS 29 + 17 = 46 TOTAL TRIALS


#### BOTTOM: 7-FACTOR CUSTOM DOE FOR FULL RSM MODEL 42 TOTAL TRIALS







#### NUMBER OF UNIQUE TRIALS FOR 3 RESPONSE-SURFACE DESIGNS AND NUMBER OF QUADRATIC MODEL TERMS VS. NUMBER OF CONTINUOUS FACTORS



If generally running 3, 4 or 5-factor fractional-factorial designs...

- 1. How many interactions are you not investigating?
- 2. How many more trials needed to fit curvature?
- 3. Consider two stages: Definitive Screening + Augmentation





## Definitive Screening Designs

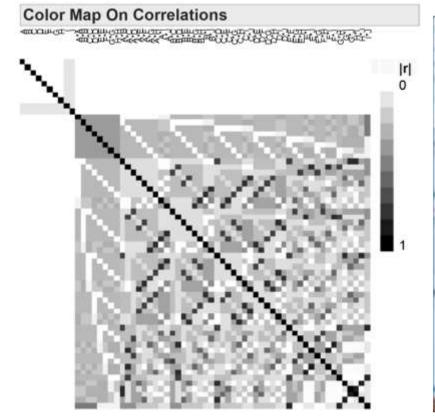
- Efficiently estimate main and quadratic effects for no more and often fewer trials than traditional designs
- If only a few factors are important the design may collapse into a "one-shot" design that supports a response-surface model
- If many factors are important the design can be augmented to support a response-surface model
- Case study for a 10-variable process shows that it can be optimized in just 23 unique trials









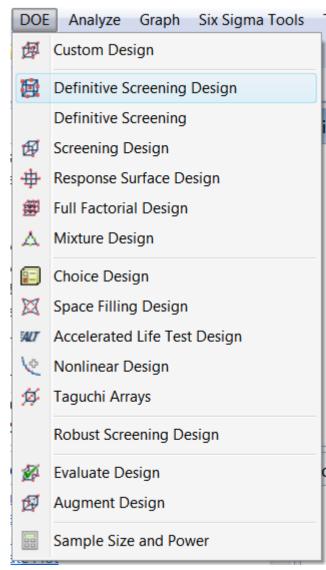

# Thanks. Questions or comments?

#### TOM.DONNELLY@JMP.COM

Copyright © 2010 SAS Institute Inc. All rights reserved.

#### JMP 11 DEFINITIVE SCREENING DESIGN COLOR MAPS FOR 8-CONTINUOUS, 2-CATEGORICAL FACTOR

## De-alias 2-f Interactions and Categorical Factors




| Responses               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |             |             |            |  |  |
|-------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|-------------|------------|--|--|
| Add Response • Remov    |                                        | Number of Responses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |             |             |            |  |  |
| Response N              | lame                                   | Goal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                       | Lower Limit | Upper Limit | Importance |  |  |
| Ŷ                       |                                        | Maximize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |             |             | 140        |  |  |
| Factors                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |             |             |            |  |  |
| Continuous Ca           | tegorical                              | Remove Add N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Eactors                                 | 2           |             |            |  |  |
| ereces.                 | 10000                                  | And a state of the |                                         |             |             |            |  |  |
| Name<br>A <sub>X1</sub> | Role                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Value                                   | es          | 1.          |            |  |  |
|                         | Continuous                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1                                      |             | 1           |            |  |  |
| x2                      | Continuous<br>Continuous<br>Continuous |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1                                      |             | 1           |            |  |  |
| x3<br>x4                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |             |             |            |  |  |
| A X4                    | 10000                                  | 1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1                                      |             | 1           |            |  |  |
| ▲ X6                    |                                        | nuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       |             | 1           |            |  |  |
| ×6                      | 2000                                   | nuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1                                      |             | -           |            |  |  |
| ± x8                    | Categorical<br>Categorical             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                      |             | 1.2         |            |  |  |
| pecify Factors          | cated                                  | torical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ler.                                    |             | 164         |            |  |  |
|                         | 347 B                                  | al factor by click                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - | ton Dauble  |             |            |  |  |



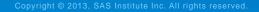


## WITH JMP 11 USE DEFINITIVE SCREENING ON DOE MENU



īmp

| Responses             |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |               |             |          |     |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|-------------|----------|-----|--|
| Add Response          | Remove                                                                                                             | Number of Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | spons                 | es            |             |          |     |  |
| Response N            |                                                                                                                    | Goal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | Lower Limit   | Upper Limit | Importan | ce. |  |
| Y                     |                                                                                                                    | Maximize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |               |             |          |     |  |
| Factors               |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |               |             |          |     |  |
| Continuous Cat        | anonical Do                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |               |             |          |     |  |
| Continuous Ca         | regonical Re                                                                                                       | Add N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Factor                | s 2           |             |          |     |  |
| Name                  | Role                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Val                   | ues           |             |          |     |  |
| - x1                  | Continu                                                                                                            | ious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                    |               | 1           |          |     |  |
| 4x2                   | X3     Continuous       X4     Continuous       X5     Continuous       X6     Continuous       X7     Categorical |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                    |               | 1           | 1        |     |  |
|                       |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                    |               | 1           |          |     |  |
|                       |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                    |               | 1           |          |     |  |
| 1 x5                  |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                    |               | 1           |          |     |  |
| 4x6                   |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - <u>1</u> 1<br>L1 L2 |               |             |          |     |  |
| ▲ x7                  |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |               | 12          |          |     |  |
| ▲ <sub>X8</sub>       |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                    |               | 12          | 1        |     |  |
| Specify Factors       | carequi                                                                                                            | 0270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.55                  |               |             |          |     |  |
| Add a Continuous o    | or Categorical f                                                                                                   | actor by dickin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a its h               | utton, Double |             |          |     |  |
| click on a factor nar | Conversion of the local data                                                                                       | And the second sec | 9.07.0                |               |             |          |     |  |
| Continue              |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |               |             |          |     |  |




#### 6-FACTOR, 16-TRIAL, NON-REGULAR FRACTIONAL FACTORIAL ("NO CONFOUNDING" DESIGN)

Jones, B. and Montgomery, D., (2010) "Alternatives to Resolution IV Screening Designs in 16 Runs." *International Journal of Experimental Design and Process Optimization*, 2010; Vol. 1 No. 4: 285-295.

|    |    |    |    |    |    |    | Color Map On Correlations                                                                                                                                      |
|----|----|----|----|----|----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Α  | В  | С  | D  | E  | F  | <b>ϤϴϽϽ</b> ͲϝϣϽϽ <u></u> ϻϝϽϽϻϝϿϻϝϷϝ                                                                                                                          |
| 1  | 1  | 1  | 1  | 1  | 1  | 1  | ттптп<br>посссощете<br>поссссащете<br>поссссащете<br>поссссащете<br>посссоще<br>поссссаще<br>посссоще<br>поссссси<br>посссссс<br>посссссссссси<br>посссссссссс |
| 2  | 1  | 1  | -1 | -1 | -1 | -1 |                                                                                                                                                                |
| 3  | -1 | -1 | 1  | 1  | -1 | -1 | •                                                                                                                                                              |
| 4  | -1 | -1 | -1 | -1 | 1  | 1  |                                                                                                                                                                |
| 5  | 1  | 1  | 1  | -1 | 1  | -1 |                                                                                                                                                                |
| 6  | 1  | 1  | -1 | 1  | -1 | 1  |                                                                                                                                                                |
| 7  | -1 | -1 | 1  | -1 | -1 | 1  |                                                                                                                                                                |
| 8  | -1 | -1 | -1 | 1  | 1  | -1 |                                                                                                                                                                |
| 9  | 1  | -1 | 1  | 1  | 1  | -1 |                                                                                                                                                                |
| 10 | 1  | -1 | -1 | -1 | -1 | 1  |                                                                                                                                                                |
| 11 | -1 | 1  | 1  | 1  | -1 | 1  |                                                                                                                                                                |
| 12 | -1 | 1  | -1 | -1 | 1  | -1 |                                                                                                                                                                |
| 13 | 1  | -1 | 1  | -1 | -1 | -1 |                                                                                                                                                                |
| 14 | 1  | -1 | -1 | 1  | 1  | 1  | <b>_</b>                                                                                                                                                       |
| 15 | -1 | 1  | 1  | -1 | 1  | 1  |                                                                                                                                                                |
| 16 | -1 | 1  | -1 | 1  | -1 | -1 |                                                                                                                                                                |





#### MORE CONSERVATIVE ANALYSIS STRATEGIES THAN STEPWISE REGRESSION METHOD

- Fit just main effects to rank factors
- Fit main effects and squared effects together to not only identify dominant factors but look for curvature in factors
- Assuming Factor Sparsity and Effect Heredity principles\* hold true - add interactions among dominant factors
  - If three or fewer factors have main effects, fit the full quadratic model for these factors with standard least squares regression.
  - If four or more factors have main effects, fit the full quadratic for these factors using stepwise regression

\*Factor Sparsity states only a few variables will be active in a factorial DOE Effect Heredity states significant interactions will only occur if at least one parent is active Pg. 112, Wu & Hamada, "*Experiments, Planning, Analysis and Parameter Design Optimization*"



