Statistical Discovery.™ From SAS.

Form 712A Non-Governmer 1. Check the Event Website for the form deadline at 2. If using the MORS Presenter Center all forms must b 3. For other events e-mail the completed form to liz ma 4. If the presentation classification and or Disclosure St entries to ensure proper labeling of the Presentation.	nt Disclosure (Contractor, Academic, UARC etc.) www.mors.org. e uploaded in the Presenter Center. rriott@mors.org. atement below is different than those entered in the MORS Presenter Center, correct the Presenter Center
PART I Author Request - The following author(s) request with subsequent publication in the MORS Event Report	authority to disclose the following presentation at the MORS Event below t and posting on the MORS website if applicable.
Principal Author	Other Author(s)
Thomas A. Donnelly	
Principal Author's Organization and complete mailing address SAS Institute Inc.	
27 Farmingdale Ln	Principle Author Phone Principle Author FAX 302-489-9291
Newark, DE 19711	Principle Author E-mail tom.donnelly@jmp.com
Principal Author's Signature X Thomas A. Donnelly	Date 3 June 2021
MORS Event	Event Date(s)
89th MORSS	21-24 June 2021
Presentation Type 🗖 Plenary 🗖 Course 🗊 Tutorial 🗖 Special Session 🕻	Poster Demonstration
Working/Composite/Distributed or Focus Group List All	Other
Title of Presentation Custom DOE – Making Your Experimental Design Fit the Problem	Presentation ID (if assigned) 56937
Classification 🔲 SECRET 🗐 SECRET//REL TO FVEY 🗐 CO	NFIDENTIAL 🔲 CONFIDENTIAL//REL TO FVEY
UNCLASSIFIED UNCLASSIFIED W/FC	DUO 🗍 Other
Distribution Statement 📕 A (Publicly Releasable) 🔲 B 🔲 C	D E (see side 2 for definitions)
A. This work was performed in connection with a government contract.	□ YES (Complete Parts I, II & III)
B. This presentation is based on material developed by the author as part of compar e.g. IR&D and was NOT done under a government contract.	ny/organization approved research 🔲 YES (Complete Parts I, II & III)
C. This presentation was NOT done under a government contract, contains no gove and is approved for public release.	rnment information, is my own work YES (Complete Part I only)

CUSTOM DESIGN OF EXPERIMENTS (DOE) - MAKING YOUR EXPERIMENTAL DESIGN FIT THE PROBLEM

89TH MORSS WEBCAST TUTORIAL 56937 JUNE 21, 2021

Tom Donnelly, PhD, CAP Principal Systems Engineer JMP Defense & Aerospace Team SAS Institute Inc. tom.donnelly@jmp.com

... AND HOW TO CONTACT US

Anna-Christina De La Iglesia

Program Manager <u>anna-christina.delaiglesia@jmp.com</u> 919-531-2593

Procurement, Upgrades, License Renewals... Sam Tobin

Senior Account Representative sam.tobin@jmp.com 919-531-0640

Technical Questions, Getting Started, Tutorials, Mentoring... Tom Donnelly, PhD, CAP

Principal Systems Engineer & Co-Insurrectionist tom.donnelly@jmp.com 302-489-9291

AGENDA

- Multiple Response Optimization
 - Trade-Space Analysis Why we do DOE
- Review of Classic DOE
- Real-World Experimental Issues Custom DOE is all about *Making Designs Fit the Problem* – *NOT Making Problems Fit the Designs!*
- Two Example Designs
 - Four continuous factors, three responses, 2nd order RSM model
 - Continuous, discrete numeric, categorical, and hard-to-change factors
 - with constraints 2nd order RSM model
- Specialized DOE Solutions

WHY USE DOE?

QUICKER ANSWERS, LOWER COSTS, SOLVE BIGGER PROBLEMS

- More rapidly answer "what if?" questions
- Do sensitivity and trade-space analysis
- Optimize across multiple responses
- By running efficient subsets of all possible combinations, one can – for the same resources and constraints – solve bigger problems
- By running sequences of designs
 one can be as cost effective as possible and
 run no more trials than needed to get a useful answer

DOE BOOKS

2011 (John Wiley Sons Inc.)

2016 (SAS Institute)

by Peter Goos and Bradley Jones

Step-by-Step Guide Using JMP

by Ronald Snee and Roger Hoerl

Approach

WWW.JMP.COM/BOOKS

> Design and Analysis of Experiments by Douglas Montgomery: A Supplement for Using JMP

by Heath Rushing, James Wisnowski, and Andrew Karl 2013 (SAS Institute)

> Design and Analysis of Experiments, 8th Edition by Douglas C. Montgomery 2012 (Wiley)

> Design of Experiments: A Modern Approach

by Bradley Jones and Douglas C. Montgomery 2019 (SAS Institute)

PETER-GOOS MARLEY KINES

OPTIMAL DESIGI OF EXPERIMENT

Strategies for Formulation

Development

Statistics for Experimenters: Design, Innovation, and Discovery, 2nd Edition

> Optimal Design of Experiments: A Case Study

Strategies for Formulations Development: A

by George E. P. Box, J. Stuart Hunter, and William G. Hunter 2005 (Wiley)

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th Edition

by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook

2016 (Wiley)

USE JMP TRADE-OFF AND OPTIMIZATION

SHARE RESULTS ON JMP PUBLIC OR JMP LIVE

View optimizations on your phone. Scan the QR code to launch browser, then use finger to interact with the Prediction Profiler and to "Apply" saved settings.

POWER TO KNOW

TRADE-OFF & OPTIMIZATION

COST RESPONSE GIVEN 6X THE IMPORTANCE OF SPEED & CONTRAST

TRADE-OFF &AFTER SELECTING LOCATION IN THE ACCEPTABLE WHITE REGION OF THE**OPTIMIZATION**CONTOUR PLOT

TRADE-OFF & OPTIMIZATION

PROFILER AFTER CENTERING IN ACCEPTABLE ZONE IN CONTOUR PLOT

CLASSIC RESPONSE-SURFACE DOE IN A NUTSHELL

POLYNOMIAL MODELS USED TO CALCULATE SURFACES

 $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$

Run this block 1st to:

(i) estimate the main effects*(ii) use center point to check for curvature. $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$

+ $a_{12}x_1x_2$ + $a_{13}x_1x_3$ + $a_{23}x_2x_3$

Run this block 2nd to:

(i) repeat main effects estimate,
(ii) check if process has shifted
(iii) add interaction effects to
model <u>if needed.</u>

 $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$ + $a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3$ + $a_{11} x_1^2 + a_{22} x_2^2 + a_{33} x_3^2$

Run this block 3rd to:

(i) repeat main effects estimate,
(ii) check if process has shifted
(iii) add curvature effects to
model <u>if needed.</u>

NUMBER OF UNIQUE TRIALS FOR 3 RESPONSE-SURFACE DESIGNS AND NUMBER OF QUADRATIC MODEL TERMS VS. NUMBER OF CONTINUOUS FACTORS

If generally running 3, 4 or 5-factor fractional-factorial designs...

- 1. How many interactions are you not investigating?
- 2. How many more trials needed to fit curvature?
- 3. Consider two stages: Definitive Screening + Augmentation

COMPARISON FOR SAME SIZED, 27-TRIAL 4-FACTOR DESIGNS: BOX-BEHNKEN, CENTRAL COMPOSITE, I-OPTIMAL, AND SMALLER 24-TRIAL & 21-TRIAL I-OPTIMAL DESIGNS

BB best for Quadratics CC best for Main Effects & Interactions IO-27 strong second for ALL IO-24 nearly as good BB highest Prediction Variance CC lower and flatter than BB IO-27 lowest & flattest Prediction Variance IO-24 nearly as good

https://community.jmp.com/t5/JMP-On-Air/Can-You-Stop-Using-Classic-RSM-Designs-Cold-Turkey-or-Take-Two-I/ta-p/263202

CLASSIC DEFINITION OF DOE PURPOSEFUL CONTROL OF THE INPUTS (FACTORS) IN SUCH A WAY AS TO DEDUCE THEIR RELATIONSHIPS (IF ANY) WITH THE OUTPUT (RESPONSES).

ALTERNATIVE A DOE IS THE SPECIFIC COLLECTION OF TRIALS **DEFINITION OF DOE** RUN TO SUPPORT A PROPOSED MODEL.

- If proposed model is *simple*, e.g. just main effects or 1st order effects (x₁, x₂, x₃, etc.), the design is called a *screening* DOE
 - Goals include rank factor importance or find a "winner" quickly
 - Used with many (> 6?) factors at start of process characterization
- If the proposed model is *more complex*, e.g. the model is 2nd order so that it includes two-way interaction terms (x₁x₂, x₁x₃, x₂x₃, etc.) and in the case of continuous factors, squared terms (x₁², x₂², x₃², etc.), the design is called a *response-surface* DOE
 - Goal is generally to develop a predictive model of the process
 - Used with a few (< 6?) factors after a screening DOE

QUADRATIC MODEL NOT THAT MUCH BIGGER THAN INTERACTION MODEL

If no squared terms, then optimum can ONLY be a corner!

For 6 factors Quadratic Model has 28 terms

For 10 factors Quadratic Model has 66 terms

REAL-WORLD DESIGN ISSUES

How many experimenters have any of these issues? Most of these are NOT well treated by classic DOE

- Work with these different kinds of control variables/factors:
- Continuous/quantitative? (Finely adjustable like temperature, speed, force)
- Categorical/qualitative? (Comes in types, like material = rubber, polycarbonate, steel with mixed # of levels; 3 chemical agents, 4 decontaminants, 8 coupon materials...)
- **Mixture/formulation?** (Blend different amounts of *ingredients* and the process performance is dependent on the *proportions* more than on the amounts)
- Blocking? (e.g. "lots" of the same raw materials, multiple "same" machines, samples get processed in "groups" – like "eight in a tray," run tests over multiple days – i.e. variables for which there shouldn't be a causal effect
- Work with **combinations of these four kinds** of variables?
- Certain combinations cannot be run? (too costly, unsafe, breaks the process)
- Certain factors are hard-to-change (temperature takes a day to stabilize)
- Would like to add onto existing trials? (really expensive/time consuming to run, or by adding constraints can repair broken design)

CATEGORICAL FACTORS AND RESPONSES

- <u>Agents</u>
 - Agent 1
 - Agent 2
 - Agent 3
- Decontaminants
 - Decon 1
 - Decon 2
 - Decon 3
 - Decon 4

- <u>Materials</u>
 - Steel
 - Aluminum
 - Glass
 - Polycarbonate
 - CARC (Paint)
 - Viton
 - Kapton
 - Silicone

<u>Responses</u>

- Pass/Fail
- Yes/No
- Not Cracked/Cracked
- Safe/Caution/Unsafe
- Not Corroded/ Moderately Corroded/ Severely Corroded

CONTINUOUS FACTORS AND RESPONSES

- Factors
 - Time
 - Temperature
 - Amount of Agent/Unit Area
 - Wind Speed
 - Humidity

- <u>Responses</u>
 - Evaporation Rate
 - Absorption
 - Adsorption
 - Residual Concentration

DISCRETE NUMERIC VARIABLE

Designs like a categorical factor Models like a continuous factor

Example: Number of Teeth on Bicycle Sprockets


	~~~~~					Evenly	Spaced		
5222	$\sim$		18	Teeth	16	19	22	25	28
5555/	$\sim$			Delta		3	3	3	3
))	3) ) <>><			% Change		18.8%	15.8%	13.6%	12.0%
2552			4						
2225	wards.		22			Actual	Spacing		
				Teeth	16	18	22	24	28
				Delta		2	4	2	4
		JANK .		% Change		12.5%	22.2%	9.1%	16.7%
		16.34				Improve	d Spacing		
				Teeth	16	18	21	24	28
100				Delta		2	3	3	4
16	24		28	% Change		12.5%	16.7%	14.3%	16.7%





## DISCRETE NUMERIC VARIABLE

Sell four sizes of pizza: 9", 12", 14" & 16" Mid-point of full range is 12.5" diameter.

Corresponding areas in sq. in. are: 64, 113, 154 & 201 Mid-point of full range is 133 sq. in., or 13" diameter.







## MIXTURE VARIABLES

#### SIMPLE MIXTURE – MAKING SALAD DRESSING

Relative *proportions* of

factors or components is more important than actual quantity

- Three liquid components -Oil, Water, and Vinegar
- 8 oz. in Cruet vs. 4 gal. in Jug 5 oz. "O" 320 oz. 5/8 1 oz. "W" 64 oz. 1/8 2 oz. "V" 128 oz. 1/4
- To study these mixture components in a DOE use ranges that are proportions:
  - O:0.500 to 0.750(½ to ¾)W:0.000 to 0.250(0 to ¼)V:0.125 to 0.375(¼ to ¾)
- Sum of proportions
   constrained to equal 1.



1 = O + W + V so therefore... W = 1 - (O + V), O = 1 - (V + W), & V = 1 - (O + W)





# **RECORDINGS AT <u>WWW.JMP.COM/FEDGOV</u>**

These	12 videos	primarily	cover D	)esign	of Experi	menst	(DOE)	topics.
				<u> </u>			· /	

<u>Custom DOE - JMP 13 (not</u> <u>14)</u> Make the Design Fit Your Problem ( <u>Link to Mastering JMP</u> )	<u>Screening Designs</u> Classic FF & PB, and Modern D-Optimal, Supersaturated, DSD, & Alias-Optimal	<u>Compare Designs</u> How to Choose Better Designs on Multiple Criteria
Advanced Custom DOE - JMP 13 (not 14) Augmentation, Broken Design Repair, & Design from a Candidate Set	Definitive Screening Designs (DSD) Creation & Augmentation	Data Transformations Get Rid of L-o-F, Predictions Make Physical Sense (Link to Mastering JMP)
<u>Mixture DOE</u> Efficiently Blending Ingredients to Optimize a Process ( <u>Link to Mastering JMP</u> )	<u>Analyzing DSD DOEs</u> Graphical Methods and Fit Definitive Screening Platform	Power Calculation via MC Simulation Binary Responses & Split-Plot Designs
Efficient M&S Using DOE How to Run Fewer Computer Simulations	Exploratory Data and Root Cause Analyses What to Do When You Don't Have a DOE	<u>Covering Arrays</u> - Rapid Fault Detection in Software & Systems



https://community.jmp.com/t5/US-Federal-Government-JMP-Users/Mixture-DOE-JMP-14/ta-p/69546





- A design run over 5 days that is sensitive to humidity might SHIFT on Thursday
  - But what if because of the rain the tester from days 1, 2, 3 & 5 didn't make it to work?
  - What if that day the power went out briefly? Or, dept. meeting "paused" the work? Or...?
- The block variable doesn't tell you the cause of the effect -

just that a shift has been detected among blocks.

- Hoping block variable has no effect. If it does then how can we reliably predict other blocks? If significant, it probably means we are missing a factor.
- The only way to be sure that no "unknown" factor has crept into the experiment, is to test for it and "blocking" your design is inexpensive.
- Block variable is a categorical factor having only 1-way effects (no interactions)





#### FOUR CONTINUOUS FACTOR RSM DESIGN

MAKE THE DOE FOR THIS ANALYSIS







#### VISUALIZE DISTRIBUTION OF DESIGN TRIALS DESIGN BALANCE PROJECTIONS OF DESIGNS TRIALS IN 2-D & 3-D

Photo_Cos	t27 - JMP Pro [3	3]				— [		<
<u>F</u> ile <u>E</u> dit <u>T</u> a	bles <u>R</u> ows <u>(</u>	ols <u>D</u> OE <u>A</u>	nalyze <u>G</u>	raph T <u>o</u> ols Ad	d-I <u>n</u> s <u>V</u> ie	ew <u>W</u> indo	w <u>H</u> elp	
i 🔛 🤮 🔛	a   🐰 🗈 🛍	i 📮 🗄 🛗 🖬 🗄	E ⊨ 🖳	) 🛏 📝 🦕				
⊿ _7/4 Cols 💌								
27/0	Sensitizer 1	Sensitizer 2	Dye	Reaction Time	Speed	Contrast	Cost	
1	50	50	250	120	5.36	0.616	0.198	^
2	50	50	200	180	5.39	0.537	0.175	
3	90	70	200	120	5.31	0.623	0.447	
4	50	90	200	150	5.13	0.431	0.177	
5	70	70	250	180	5.37	0.643	0.445	
6	50	90	300	120	4.79	0.375	0.231	
7	90	90	200	180	5.45	0.626	0.471	
8	90	50	250	150	5.00	0.470	0.670	
9	50	50	300	150	5.22	0.478	0.283	
10	70	90	200	120	5.41	0.668	0.226	
11	90	90	250	120	5.33	0.734	0.310	
12	50	50	250	120	5.32	0.574	0.257	
13	70	50	200	150	5.49	0.596	0.456	
14	50	70	250	180	5.22	0.558	0.166	
15	70	70	250	150	5.57	0.689	0.390	
16	90	90	300	150	5.26	0.653	0.226	
17	70	70	250	150	5.47	0.688	0.356	
18	70	70	300	120	5.42	0.657	0.337	
19	50	70	200	120	5.43	0.518	0.222	
20	50	50	300	150	5.15	0.505	0.287	
21	90	70	200	120	5.33	0.661	0.457	
22	50	90	300	120	4.97	0.411	0.191	
23	90	50	300	120	5.09	0.492	0.588	
24	90	50	300	180	5.03	0.358	0.733	
25	70	70	250	150	5.59	0.707	0.318	
26	70	90	300	180	5.25	0.605	0.290	
27	50	90	200	150	5.24	0.476	0.177	~
	<						>	÷









jmp

## DISTRIBUTIONS OF RESPONSES AND FACTORS CAN FIND OBSERVATION WITH HIGHEST DESIRABILITY







## **3 DIFFERENT FACTOR TYPES PLUS 2 CONSTRAINTS** CREATE C

## CREATE DOE FOR A REAL-WORLD PIZZA PROCESS

Continuous

Continuous

Discrete Numeric

4 levels

Categorical 3 levels



- Temp: 350 450 (hard-to-change)
- Pizza Size: 9, 12, 14, & 16
- Pizza Type
  - Cheese
  - Meats
  - Veggies
- Hi + Hi = "Burnt"
- Lo + Lo = "Not Done"







- Shorter times means more product produced per hour
- Make most of our money in a few hours each evening
- "No pizza shall take more than 7 minutes!" – Mgmt.



















			Constraint
_	Time	Temp	Location
1	15	450	Upper
2	20	400	Upper
3	15	350	Lower
4	10	400	Lower









Slope = m = rise/run = -150/15; m = -10Intercept = b = y when x = zero; b = 625

y = mx + b Temp = m*Time + b [1]*Temp = [-10]*Time + [625] [10]*Time + [1]*Temp = [625]

[10]*Time + [1]*Temp <= [625]

y = mx + bTemp = m*Time + b [1]*Temp = [-10]*Time + [475] [10]*Time + [1]*Temp = [475]

[10]*Time + [1]*Temp >= [475]





#### **3 DIFFERENT FACTOR TYPES 1 IS HARD-TO-CHANGE PLUS 2 CONSTRAINTS**

**CREATE DOE** FOR A PIZZA PROCESS

Add Factor ▼ Rer	move Add N F	actors	1				
Name	Role	Changes	Values				
<b>_</b> Time	Continuous	Easy	10			20	
Temperature	Continuous	Hard	350			450	
🖉 Pizza Size	Discrete Nun	n Easy	9	12		14	16
<ul> <li>Pizza Type</li> </ul>	Categorical	Easy	Cheese	V	eggie	S	Meats
Define Factor C	onstraints						
) None							
Specify Linear Co	onstraints						
Specify Linear Control Specify Linear Cont	onstraints Combinations Fi	lter					
<ul> <li>Specify Linear Co</li> <li>Use Disallowed</li> <li>Use Disallowed</li> </ul>	onstraints Combinations Fi Combinations So	ilter cript					
<ul> <li>Specify Linear Co</li> <li>Use Disallowed</li> <li>Use Disallowed</li> <li>Linear Constraints</li> </ul>	onstraints Combinations Fi Combinations So	ilter cript					
Specify Linear Co     Use Disallowed     Use Disallowed     Linear Constraints	onstraints Combinations Fi Combinations So	ilter cript					
<ul> <li>Specify Linear Co</li> <li>Use Disallowed</li> <li>Use Disallowed</li> <li>Linear Constraints</li> <li>Add</li> </ul>	onstraints Combinations Fi Combinations So	ilter cript					
<ul> <li>Specify Linear Co</li> <li>Use Disallowed 0</li> <li>Use Disallowed 0</li> <li>Linear Constraints</li> <li>Add</li> <li>10 Time +</li> </ul>	onstraints Combinations Fi Combinations So	ilter cript berature	<u>≤ v</u>	625	]		
<ul> <li>Specify Linear Co</li> <li>Use Disallowed</li> <li>Use Disallowed</li> <li>Linear Constraints</li> <li>Add</li> <li>10 Time +</li> <li>10 Time +</li> </ul>	onstraints Combinations Fi Combinations Se 1 Temp 1 Temp	lter cript perature perature	<u>≤ v</u> <u>≥ v</u>	625	]		
<ul> <li>Specify Linear Co</li> <li>Use Disallowed</li> <li>Use Disallowed</li> <li>Linear Constraints</li> <li>Add</li> <li>10 Time +</li> <li>10 Time +</li> <li>Remove Last Constraints</li> </ul>	onstraints Combinations Fi Combinations Si 1 Temp 1 Temp straint	ilter cript perature perature	<ul><li>≤ *</li><li>≥ *</li></ul>	625	]		

Main Effects Interactions 🔻	RSM Cross Powers <b>v</b> Remove	Term
Name	Estimability	
Intercept	Necessary	~
Time	Necessary	
Temperature	Necessary	
Pizza Size	Necessary	
Pizza Size*Pizza Size	If Possible	
Pizza Size*Pizza Size*Pizza Size	If Possible	
Pizza Type	Necessary	
Time*Time	Necessary	
Time*Temperature	Necessary	
Temperature*Temperature	Necessary	
Time*Pizza Size	Necessary	$\sim$

⊿ Design Generatio	n
Number of Whole Plots	6

#### Number of Runs:

O Minimum	17
<ul> <li>Default</li> </ul>	24
O User Specified	24

Make Design

⊨	Whole Plots	Time	Temperature	Pizza Size	Pizza Type	
	1	20	450	16	Cheese	
	2				Veggies	
	3				Meats	
	4					
	5					
	0	10	350	9		
1	1	20	375	12	Cheese	
2	1	16	375	16	Veggies	
3	1	16	375	14	Meats	
4	1	10	375	14	Veggies	
5	2	20	350	16	Meats	
6	2	13	350	9	Meats	
7	2	13	350	14	Cheese	
8	2	19	350	9	Veggies	
9	3	20	405	14	Veggies	
10	3	15	405	12	Meats	
11	3	15	405	16	Cheese	
12	3	10	405	9	Veggies	
13	4	18	442	16	Meats	
14	4	13	442	12	Cheese	
15	4	18	442	16	Cheese	
16	4	18	442	9	Veggies	
17	5	10	450	16	Cheese	
18	5	18	450	9	Cheese	
19	5	11	450	16	Veggies	
20	5	10	450	9	Meats	
21	6	10	400	9	Cheese	
22	6	15	400	12	Veggies	
23	6	20	400	9	Meats	
24	6	10	400	16	Meats	





## FINAL DESIGN SHOWING CONSTRAINED REGIONS







## FINAL DESIGN SHOWING CONSTRAINED REGIONS







## FINAL DESIGN SHOWING CONSTRAINED REGIONS







#### AGENDA

- Multiple Response Optimization
  - Trade-Space Analysis Why we do DOE
- Review of Classic DOE
- Real-World Experimental Issues Custom DOE is all about *Making Designs Fit the Problem* – *NOT Making Problems Fit the Designs!*
- Two Example Designs
  - Four continuous factors, three responses, 2nd order RSM model
  - Continuous, discrete numeric, categorical and blocking factors with constraints – 2nd order RSM model
- Specialized DOE Solutions





	Α	в	С	D	Е	F
1	0	1	-1	-1	-1	-1
2	0	-1	1	1	1	1
3	1	0	-1	1	1	-1
4	-1	0	1	-1	-1	1
5	-1	-1	0	1	-1	-1
6	1	1	0	-1	1	1
7	-1	1	1	0	1	-1
8	1	-1	-1	0	-1	1
9	1	-1	1	-1	0	-1
10	-1	1	-1	1	0	1
11	1	1	1	1	-1	0
12	-1	-1	-1	-1	1	0
13	0	0	0	0	0	0

## DEFINITIVE SCREENING DESIGN NEW ALTERNATIVE TO CLASSIC 2-LEVEL SCREENING DESIGNS





Data Columns A B C



**Color Map On Correlations** 

тітіті торосостата раба раба та сососта торосостата в сосостата с та сосостата та сосостата та сосостата та сосостата та сосостата с сосостата с

|r|



# AUGMENTATIONIF MORE THAN A FEW FACTORS ARE SIGNIFICANT FOR DSD,VIA CUSTOM DOETHEN AUGMENT DESIGN TO SUPPORT 2ND ORDER MODEL

	<b>′0</b> 💽								Yield @	
		Α	В	С	D	F	G	Block	Time t	
	14	0	0	0	0	0	0	1	7.49	
	15	1	1	-1	1	-1	1	1	0.98	
	16	1	1	1	-1	-1	0	1	0.86	
	17	-1	1	-1	-1	1	1	1	1.25	
	18	1	-1	1	1	-1	-1	1	1.03	
	19	1	1	0	-1	1	-1	1	1.07	
	20	0	0	0	0	0	0	1	7.33	
	21	1	-1	-1	0	1	-1	1	2.61	
	22	-1	-1	0	1	-1	1	1	11.39	
	23	-1	0	1	-1	1	1	1	12.96	
	24	1	1	-1	1	1	1	1	1.18	
/	25	1	0	1	1	-1	1	2	•	
	26	1	-1	0	1	1	0	2	•	
	27	1	-1	-1	1	0	1	2	•	
	28	1	-1	0	-1	0	-1	2	•	
	29	1	0	-1	-1	1	0	2	•	
	30	1	1	0	-1	0	1	2	•	
	31	1	0	1	0	1	-1	2	•	
	32	-1	-1	0	0	1	1	2	•	
	33	0	0	1	1	-1	-1	2	•	
	34	-1	-1	1	0	0	0	2	•	
	35	0	1	1	0	1	0	2	•	
1	36	0	1	-1	1	1	-1	2		/

NOTE: First 13 rows of original design are not shown.

These 12 trials added onto original 24 trials to support full quadratic model in 6 most important factors plus a block effect between original and augmented trials



36 trial I-optimal response-surface design started as 10-factor DSD and was then augmented with 12 more trials in 6 most important factors

![](_page_41_Picture_6.jpeg)

![](_page_41_Picture_7.jpeg)

## **3-COMPONENT MIXTURE DOE** WITH CONSTRAINTS

#### **RARELY DO COMPONENTS RANGE FROM 0 TO 1,** UNLESS TAKING UP THE SLACK IN A BLEND, LIKE WATER. **VERY OFTEN ADDITIONAL CONSTRAINTS**

0.8

0.7

0.6

0.5

0.4

0.9

0.3

0.2

Vinega

0.1

Study mixture components in a DOE use ranges that are proportions:

- 0.500 to 0.750 (¹/₂ to ³/₄) **O**:
- W:  $0.000 \text{ to } 0.250 \quad (0 \text{ to } \frac{1}{4})$
- 0.125 to 0.375 (1/8 to 3/8) V:

Sum of proportions *constrained* to equal 1.

1 = O + W + V so therefore... W = 1 - (O + V),O = 1 - (V + W), &V = 1 - (O + W)

![](_page_42_Picture_8.jpeg)

![](_page_42_Picture_9.jpeg)

## **SPACE-FILLING DOE FOR SIMULATIONS** HOW ARE SPACE-FILLING DESIGNS DIFFERENT FROM TRADITIONAL DOE?

![](_page_43_Figure_1.jpeg)

Rather than emphasizing high leverage trials ("corners") for a simple polynomial model, space-filling designs "spread" their trials more uniformly through the space to better capture the local complexities of the simulation model.

![](_page_43_Picture_3.jpeg)

![](_page_43_Picture_4.jpeg)

# SPACE-FILLING DOESPACE-FILLING DESIGNS ARE BETTER ABLE TO DETECT WHEN AFOR SIMULATIONSPROCESS FALLS OFF A CLIFF OR HAS A SPIKE

![](_page_44_Figure_1.jpeg)

![](_page_44_Figure_2.jpeg)

Rather than emphasizing high leverage trials ("corners") for a simple polynomial model, space-filling designs "spread" their trials more uniformly through the space to better capture the local complexities of the simulation model.

![](_page_44_Picture_4.jpeg)

![](_page_44_Picture_5.jpeg)

# SEQUENTIAL36 OF ALL 648 POSSIBLE COMBINATIONS OF SETTINGSEXPERIMENTATIONFOR 6 VARIABLES (6 X 2 X 2 X 3 X 3 X 3)

![](_page_45_Figure_1.jpeg)

Red Dots Mark the 36 Trials (an Orthogonal Array) Analyzed for Stage 1

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

SEQUENTIAL EXPERIMENTATION

jmp

#### FOUR STAGE DESIGN SUPPORTING INCREASING COMPLEXITY OF MODEL

THE POWER TO KNOW。

Stage 1	Stage 2	Stage 3	Stage 4	
<b>36</b> Total Simulations	<b>108</b> Total Simulations	<b>324</b> Total Simulations	ALL <b>648</b> Simulations	
Design 1, 36 trials	Design 1, 36 trials	Design 1, 36 trials	Design 1, 36 trials	
	Design 2, 72 trials	Design 2, 72 trials	Design 2, 72 trials	
		Design 3, 216 trials	Design 3, 216 trials	
Main effects only for ALL variables + some 2-way interactions	Stage 1 effects plus all 2-way interactions + some 3-way interactions	Stage 2 effects plus all 3-way interactions	Stage 3 effects plus ALL remaining 4-way, 5-way and 6-way interactions	
5.6% of 648 <b>324 trials in Desi</b>	50% of 648 for Designs 1, 2 & 3 —	Design 4, 324 trials NOTE: Length of this green box should be longer than shown		

### ACCELERATED LIFE TEST DESIGN

#### TAKE TRIALS WHERE THEY GIVE THE BEST INFORMATION

![](_page_47_Figure_2.jpeg)

![](_page_47_Picture_3.jpeg)

![](_page_47_Picture_4.jpeg)

# FUNCTIONAL DATAMODELING THE "SHAPE" OF A STREAM OF DATA – SHAPE IS THE FUNDAMENTALANALYSIS FOR DOEUNIT OF OBSERVATION – DIMENSION REDUCTION WITH FUNCTIONAL PCA

![](_page_48_Figure_1.jpeg)

![](_page_48_Picture_2.jpeg)

![](_page_48_Picture_3.jpeg)

Copyright © 2018, SAS Institute, Inc. All rights reserved.

63

#### COVERING ARRAYS FEWEST TESTS FOR N-WAY COVERAGE

![](_page_49_Picture_1.jpeg)

Twenty check boxes in this dialog box

 $2^{20} = 1,048,576$ possible combinations

How many tests to check: All pairs? All triples? All quadruples? All quintuples? All sextuples?

![](_page_49_Picture_5.jpeg)

![](_page_49_Picture_6.jpeg)

#### **COVERING ARRAYS FEWEST TESTS FOR N-WAY COVERAGE**

![](_page_50_Figure_1.jpeg)

Graph courtesy of Rick Kuhn, NIST

![](_page_50_Figure_3.jpeg)

Number of Runs: 8			
t	Coverage	Diversity	
2	100.00	50.00	
3	76.32	76.32	
4	45.43	90.87	
Number of Runs: 18			
t	Coverage	Diversity	
3	100.00	44.44	

6	27.16	96.57			
Number of Runs: 40					
t	Coverage	Diversity			
<b>t</b> 4	<b>Coverage</b> 100.00	<b>Diversity</b> 40.00			
<b>t</b> 4 5	Coverage 100.00 88.24	<b>Diversity</b> 40.00 70.59			

81.25

50.30

4

5

72.22

89.42

Number	154	
t	Coverage	Diversity
5	100.00	20.78
6	96.39	40.06

Number	359	
t	Coverage	Diversity
6	100.00	17.83

![](_page_50_Picture_8.jpeg)

![](_page_50_Picture_9.jpeg)

# **JMP ON AIR** REALLY USEFUL "JMP ON AIR" 20-MIN SEGMENTS ON DATA PREP BY THE "DATA DOCTOR," BRADY BRADY

URL Link to April 10th recording of Brady handling data wrangling/clean up/shaping issues: <u>https://community.jmp.com/t5/JMP-On-Air/Garbage-in-Goodies-out/ta-p/256748#U256748</u> You will need to join the JMP Community (create a SAS Profile). You can also post questions to the JMP Community to get answers from data geeks that watch for challenging problems.

URL Link to April 3rd recording of the Data Doctor handling date and time issues: <u>https://community.jmp.com/t5/JMP-On-Air/The-Doctor-Cures-Your-Date-and-Time-Import-Problems/ta-p/255386#U255386</u>

URL Link to April 17th Data Doctor segment on special formula columns https://community.jmp.com/t5/JMP-On-Air/Special-Formula-Columns/m-p/257371#U257371

This link will take you to the top of the JMP On Air episode lists that you can then drill down to see the segments and links. <u>https://community.jmp.com/t5/JMP-On-Air/tkb-p/jmp-on-air</u>

Here is a link to download Brady's "Data Table Tools Add-in." <u>https://community.jmp.com/t5/JMP-Add-Ins/Data-Table-Tools-Add-in/ta-p/28582</u> It includes a document of instructions. Really useful.

![](_page_51_Picture_6.jpeg)

![](_page_51_Picture_7.jpeg)