

Form 712A Non-Government Disclosure (Contractor, Academic, UARC etc.)

1. Check the Event Website for the form deadline at www.mors.org.

2. If using the MORS Presenter Center all forms must be uploaded in the Presenter Center.

3. For other events e-mail the completed form to liz.marriott@mors.org.

4. If the presentation classification and or Disclosure Statement below is different than those entered in the MORS Presenter Center, correct the Presenter Center entries to ensure proper labeling of the Presentation.

PART I Author Request - The following author(s) request at with subsequent publication in the MORS Event Report	athority to disclose the following presentation at the MORS Event below and posting on the MORS website if applicable.					
Principal Author	Other Author(s)					
Thomas A. Donnelly						
Principal Author's Organization and complete mailing address						
SAS Institute Inc.						
27 Farmingdale Ln	Principle Author Phone Principle Author FAX 302-489-9291					
Newark, DE 19/11	Principle Author E-mail					
	tom.donnelly@jmp.com					
Principal Author's Signature X	Date 2 km z 2021					
Thomas A. Donnelly	3 June 2021					
NORS Event	Event Date(s)					
6501 MOR35	21-24 Julie 2021					
Presentation Type 🔲 Plenary 🗍 Course 🔳 Tutorial 🔲 Special Session 🗐	Poster Demonstration					
Working/Composite/Distributed or Focus Group List All	Other					
Title of Presentation	Presentation ID 560/1					
Modeling with Streamed Sensor Data – "What to do when your data is a	curve." (if assigned) JU94 I					
Classification SECRET SECRET//REL TO FVEY CON	FIDENTIAL 🔲 CONFIDENTIAL//REL TO FVEY					
UNCLASSIFIED UNCLASSIFIED W/FOU	JO 🗍 Other					
Distribution Statement 🖪 A (Publicly Releasable) 🔲 B 🔤 C 🔲 I	D 🗖 E (see side 2 for definitions)					
A. This work was performed in connection with a government contract.	TYES (Complete Parts I, II & III)					
B. This presentation is based on material developed by the author as part of company e.g. IR&D and was NOT done under a government contract.	/organization approved research I YES (Complete Parts I, II & III)					
C. This presentation was NOT done under a government contract, contains no government information, is my own work and is approved for public release.						

Modeling Streamed Sensor Data with Functional Data Analysis 1) Using the Sensor Stream as an Input to a Machine Learning Model, and 2) Predicting the Shape of the Sensor Stream using Design of Experiments

> 89th MORSS Webcast Tutorial 56941 June 24, 2021

Tom Donnelly, PhD, CAP JMP Defense & Aerospace Team *Principal System Engineer* <u>tom.donnelly@jmp.com</u> 302-489-9291

Outline

- Who is doing FDA?
- My old Army problem
- What are Examples of Functional Data?
- What is Functional Data Analysis (FDA)?
- How do we analyze functional data?
- How do we use Functional Principal Component (FPC) scores to model responses?
- Simple case study with one FPC score
- More complex case study predicting wafer condition from 5 sensor streams & 12 FPC scores
- My old Army problem solved
- Summary
- Additional Resources

Who in DoD is Looking at or Already Using FDA?

- CCDC Armaments Center
- Army Evaluation Center
- Eglin AFB
- Edwards AFB
- NAWCWD
- COTF
- NUWC
- MCOTEA
- IDA
- JHU/APL
- LMCO
- NGC

10-factor Agent Transport & Dispersion Simulation

- Able to model Concentration at a particular time,
- or Dosage *at end of time,*
- but *NOT* Concentration *shape over time*
- Profs. Jeff Wu & Roshan Joseph from Georgia Tech ISyE suggested using Functional Data Analysis

Examples of Functional Data

- Sensor streams
- Measurements taken over a range
- Vibration signals
- Spectral data
- Tool wear
- Gun barrel degradation
- Radar/sonar signatures
- Trajectories of flights between cities
- Tracking of surgeon hand movement
- Electrocardiograms (EKGs)
- Almost any response in a longitudinal order

Vibration Sensor

Radar and Sonar Data

Electrocardiograms

Remaining Useful Life Estimation Using Functional Data Analysis

Qiyao Wang, Shuai Zheng, Ahmed Farahat, Susumu Serita, Chetan Gupta Industrial AI Laboratory, Hitachi America, Ltd. R&D Santa Clara, CA, USA firstname.lastname@hal.hitachi.com

2019

Abstract—Remaining Useful Life (RUL) of an equipment or one of its components is defined as the time left until the equipment or component reaches its end of useful life. Accurate RUL estimation is exceptionally beneficial to Predictive Maintenance, and Prognostics and Health Management (PHM). Data driven contrary, when the end of the equipment's life is approaching, accurate RUL estimation provides early enough warning to the maintenance departments such that they can plan their actions in advance.

TABLE III: Score comparison on C-MAPSS data and improvement ('IMP') of functional MLP over LSTM [3]

Model	FD001	FD002	FD003	FD004
MLP [10]	$1.8 imes 10^4$	$7.8 imes 10^6$	$1.7 imes 10^4$	$5.6 imes10^6$
SVR [10]	$1.4 imes10^3$	$5.9 imes 10^5$	$1.6 imes10^3$	$3.7 imes 10^5$
RVR [10]	$1.5 imes10^3$	$1.7 imes 10^4$	$1.4 imes10^3$	$2.7 imes 10^4$
CNN [10]	$1.3 imes 10^3$	$1.4 imes 10^4$	$1.6 imes10^3$	$7.9 imes10^3$
LSTMBS [11]	$4.8 imes 10^2$	$8.0 imes10^3$	$4.9 imes10^2$	$5.2 imes10^3$
LSTM [3]	$3.4 imes 10^2$	$4.5 imes 10^3$	$8.5 imes 10^2$	$5.6 imes10^3$
FMLP	$2.0 imes10^2$	$9.0 imes10^2$	$1.8 imes10^2$	$1.0 imes10^3$
IMP	41.18%	80.00%	78.82%	82.14%

What is Functional Data Analysis?

Functional data analysis (FDA) is a branch of statistics that analyzes data providing information about **curves**, **surfaces** or anything else **varying over a continuum**. In its most general form, under an FDA framework each sample element is considered to be a **function**.

Traditional Rectangular Data

<				
	Batch	X1	X 2	Y
1	001	1.00	1.00	2.17
2	002	0.94	1.01	0.00
3	003	1.06	1.01	2.70
4	004	0.94	0.99	0.26
5	005	1.06	0.99	2.87
6	006	1.00	1.00	1.97

Functional Data

The *curve* is the fundamental unit of observation

Functional Data can also be Xs. When one has curves as outputs of a DOE they are usually the Ys.

Analysis Method Overview: Data Landmarks

Curve was split into sections and key points and slopes were used as separate results

Standard statistical methods compared each landmark value

Landmarks from new tests were compared to previous runs

Most effective non-FDA option

Must perform statistical analysis on each landmark

Based on slide from David Harrison of Lockheed Martin Corporation

Functional Data Analysis seminal work by James O. Ramsay and Bernard W. Silverman

2005 (1e 1997) 2005

Two Ways to Use Functional Data Analysis

- Functional Response DOE (F-DOE): Goal is to use DOE factors to predict the functional response – the *curve*
- 2. Functional Response Machine Learning (F-ML): Goal is to use the functional data – *i.e. the curve(s)* – to predict something
 - a) yield of a batch
 - b) probability of detection / failure / hit

Functional Data Analysis

- F-DOE & F-ML use functional principal components analysis (F-PCA)
- F-PCA breaks the data into *FPC Scores* and *Eigenfunctions* in a dimension reduction that is closely analogous to classical PCA
- FPC Scores are scalars that explain *function-to-function variation*
- Eigenfunctions explain the *longitudinal variation* (e.g., *time*)
- We fit models with the FPC scores, cluster them, graph them *just like any other continuous data*
- For F-DOE we *fit the FPC scores as functions of the DOE factors* using (FPC score) X (Eigenfunctions) as intermediate formulas, and (Modeled FPC score) X (Eigenfunctions) as final prediction formula

- 1. Convert streams of data into a function Fit Splines or Fourier basis functions
- 2. Create Functional Principal Components of the basis function do F-PCA

IMD. Statistical Discovery.™ From SAS

- 1. Convert streams of data into a function Fit Splines or Fourier basis functions
- 2. Create Functional Principal Components of the basis function do F-PCA

- 3. Eigenfunctions explain the longitudinal variation.
- 4. Function Summaries (FPC scores) explain function-to-function variation.

IMD. Statistical Discovery.™ From SAS

- 3. Eigenfunctions explain the longitudinal variation.
- 4. Function Summaries (FPC scores) explain function-to-function variation.

5. Products of FPC scores multiplying their corresponding eigenfunctions, when added to the Mean closely reproduce the individual function (batch) curves.

Eigenfunction 1 Eigenfunction 2 Eigenfunction 3

 $Y(X) = \mu(X)$

$$Y(X) = \mu(X) + 0.05 \cdot E_1(X)$$

Х

 $Y(X) = \mu(X) + 0.05 \cdot E_1(X) + 0.50 \cdot E_2(X)$

Х

Х

 $Y(X) = \mu(X) + 0.05 \cdot E_1(X) + 0.50 \cdot E_2(X) + 0.12 \cdot E_3(X)$

Simple Case Study Based on Real Data Using Functional Principal Components

FPCs efficiently summarize your functional data in a few components, but how do we use these to help analyze our data?

Example DoE response

Example DoE Response

LEFT: Definitive Screening Design plus Confirmation Trials RIGHT: Measured Batch Profiles - Thick yellow line is "Ideal" response, aka "Golden Curve"

							Size (nm) vs. Time (min)	Batch
Batch	Run Order	%Beads	%Active	Flow	Temperature	Trial Type	250	- 2887
2887	1	90	25	150	45	Design		-2892
2892	2	80	25	350	15	Design		
2899	3	80	15	550	15	Design		- 2905
2905	4	80	15	150	45	Design		- 2908
2908	5	90	25	150	15	Design		-2912
2912	6	90	15	150	30	Design	200-	-2918
2914	7	85	15	150	15	Design		-2919
2918	8	90	15	550	15	Design		- 2920
2919	9	90	25	550	15	Design		
2920	10	90	15	350	45	Design		-2971
2963	11	80	20	150	15	Design	Ê	-2978
2964	12	85	20	350	30	Design	150-	-2980
2971	13	80	25	150	45	Design	- Siz	- 3016
2978	14	80	25	550	30	Design		- 3030
2980	15	85	25	550	45	Design		- 3045
3016	16	80	15	550	45	Design		- 3048
3030	17	90	20	550	45	Design		- 3049
3037	18	87.5	17.5	450	37.5	Confirmation	n 100-	
3045	19	87.5	22.5	450	22.5	Confirmation	n 95	- 3060
3048	20	87.5	17.5	250	22.5	Confirmation	n Spec Limits	5000
3049	21	82.5	17.5	450	22.5	Confirmation	n	
3054	22	82.5	22.5	250	37.5	Confirmation	n 70	-
3060	23	90	25	550	45	Confirmation	n -	
3063	24	85	20	350	30	Confirmation	n 50	
5000	25	•	•	•	•	Confirmation	n 0 5 10 15	20
							Time (min)	

Single Eigenfunction and Associated FPC Scores for each Batch

✓ Functional P	CA				
FPC Eigenval	ue 20 40 60	08 (Percent	Cumulative	
1 2122	2.9	99%		99%	
Function Sum	maries				
Batch of Mill					
DOE responses	FPC 1				
2887	-85.9675		M	hre	
2892	2.2051353				
2899	79.337968		Ditte	erent: +79	
2905	58.272695				
2908	-60.35218				
2912	7.7564941	K	>		
2914	49.652658		Simi	lar: -58 ±	2
2918	22.510929		\$ }		_
2919	-56.34453		· 		
2920	9.1386688		Mean 250		0.0
2963	29.363581		- 200-1		0.3
2964	-13.79295		<u>د</u> 150		0.2 0.2
2971	-21.19822		I00		
2978	-6.822422		50		0.0
2980	-38.32591		0	5 10 15 20	
3016	71.771035			Time	
3030	-47.20546	Y((X) =	$\mu(X) + F$	FPC1

Copyright © 2018, SAS Institute, Inc. All rights reserved.

5 10 15 20 Eigenfunction 1

 $E_1(X)$

Model the FPC Scores as functions of the DOE factors Batch 2899

Model the FPC Scores as functions of the DOE factors Batch 2908

Model the FPC Scores as functions of the DOE factors Batch 2919

FDOE Profiler

BEFORE: Golden Curve Optimization

FDOE Profiler

AFTER: Golden Curve Optimization

Final Prediction Model

Two Ways to Use Functional Data Analysis

- Functional Response DOE (F-DOE): Goal is to use DOE factors to predict the functional response – the *curve*
- 2. Functional Response Machine Learning (F-ML): Goal is to use the functional data – *i.e. the curve(s)* – to predict something
 - a) yield of a batch
 - b) probability of detection / failure / hit

Two Ways to Use Functional Data Analysis

- Functional Response DOE (F-DOE): Goal is to use DOE factors to predict the functional response – the *curve*
- 2. Functional Response Machine Learning (F-ML): Goal is to use the functional data – *i.e. the curve(s)* – to predict something
 - a) yield of a batch
 - b) probability of detection / failure / hit

Case Study Using Five Sensor Streams of Functional Data to Predict Wafer Condition after Anodic Bonding of Glass to Wafer

Picture from Wikipedia...

Glass Bonded to Silicon Wafer ISSUE: 12% of Wafers become Defective **BUT won't Know for Weeks which have Failed!**

Anodic Bond Data: 2000 Wafers X 61 Time Steps = 122,000 Rows

The bonding tool has several sensors that take real-time measurements of *Charge, Flow, Piston Force, Vacuum, & Voltage*.

	Wafer Id	Condition	Validation	Order	Charge	Flow	Piston Force	Vacuum	Voltage
1	1	GOOD	Training	1	0.00	0.3013	0	0.00	0.00
2	1	GOOD	Training	2	0.00	0.3013	0	0.00	0.00
3	1	GOOD	Training	3	0.00	0.3013	0	0.50	0.00
4	1	GOOD	Training	4	0.00	0.3013	0	0.50	0.00
5	1	GOOD	Training	5	0.00	0.3013	0	0.94	0.00
6	1	GOOD	Training	6	0.00	0.3013	0	0.94	0.00
7	1	GOOD	Training	7	0.00	0.0008	0	0.99	0.00
8	1	GOOD	Training	8	0.00	0.0008	0	1.00	0.00
9	1	GOOD	Training	9	0.00	0.0008	0	1.00	0.00
10	1	GOOD	Training	10	0.00	0.0008	0	0.99	0.00
11	1	GOOD	Training	11	0.00	0.0008	0	0.99	0.00

Can we use these sensor data to predict with high probability the wafers that were damaged by the bonding process – right now?

Anodic Bond Data: Discrete Observations

Anodic Bond Data: Smoothed Data Streams from 2000 Glass-to-Wafer Bonds

What is Functional Data Analysis?

Functional data analysis (FDA) is a branch of statistics that analyzes data providing information about **curves**, **surfaces** or anything else **varying over a continuum**. In its most general form, under an FDA framework each sample element is considered to be a **function**.

2000 wafers X 61 rows/wafer

					Piston						
	Wafer Id	Order	Charge	Flow	Force	Vacuum	Voltage		Wafer Id	Charge	Flow
	1	61	8073	813	2340	2.85	133		200		
	2										
	3										
	4										
	5								1		
	1,995 others	1	0	0	0	0	0		1		
1	1	1	0.00	0.3013	0	0.00	0.00	\sim			
2	1	2	0.00	0.3013	0	0.00	0.00			/	
3	1	3	0.00	0.3013	0	0.50	0.00				
4	1	4	0.00	0.3013	0	0.50	0.00			/	
5	1	5	0.00	0.3013	0	0.94	0.00		2		
6	1	6	0.00	0.3013	0	0.94	0.00			/	
7	1	7	0.00	0.			_				
8	1	8	0.00	0. F	unct	ional	data	a t	o be u	sed as i	nputs
9	1	9	0.00	0.			0.0.00				
10	1	10	0.00	o. to	ר ה ר	1achi	nelo	ea	irning i	model	
11	1	11	0.00	0.		100111				noach	
12	1	12	0.00	0.0008	0	0.93	0.00				
13	1	13	0.00	2.3e-6	0	0.93	0.00		4		
14	1	14	0.00	2.3e-6	0	0.16	0.00				
15	1	15	0.00	2.3e-6	0	0.00	0.00			/	
16	1	16	0.00	2.3e-6	0	0.00	0.00	\sim		/	
17	<						>		<		
				~					`		<u> </u>

2000 Functional Data Streams

Piston Force

Vacuum

Voltage

122,000 rows of data

Curve is the fundamental unit of observation

5. Products of FPC scores multiplying their corresponding eigenfunctions, when added to the Mean closely reproduce the individual function (Flow) curves.

Copyright © 2018, SAS Institute, Inc. All rights reserved.

Flow FPC1

Table of 12* FPC Scores used to Model Condition

Wafer Id	Condition	Validation	Charge FPC 1	Flow FPC 1	Flow FPC 2	Piston Force FPC 1	Vacuum FPC 1	Vacuum FPC 2	Vacuum FPC 3
1 2	GOOD BAD	Training Validation	8295	45.7	34.7	1311	2.97	0.58	0.3
3 4 5		Test							
1,995 others			-8903	-281	-28.6	-1442	-1.04	-0.72	-0.59
2	GOOD	Training	1939.8213944	-47.99467507	11.835188042	896.52111845	-1.01396436	-0.367923438	-0.296827224
6	GOOD	Training	212.05037509	-25.13715846	-0.995827966	-84.14117634	0.5477329858	-0.345665597	-0.124382493
9	GOOD	Training	-34.75688741	45.575552449	-10.16506939	315.25975102	-0.538688448	0.1508261265	0.1519855668
11	BAD	Training	-1213.835105	45.495664474	6.680705469	50.911046557	-0.064379983	-0.01993877	0.0981726233
12	GOOD	Training	-1013.153308	-39.90355 <mark>1</mark> 63	2.3623655717	-340.5227485	0.9016693131	-0.178605516	0.0605873881
16	GOOD	Training	-3985.006867	9.903945259	-3.719261334	-587.5458989	0.7955624065	0.0297828066	0.042004684
17	GOOD	Training	1832.3340433	-152.6794891	-3.02626366	134.08863681	-0.621848953	-0.486645362	0.121393253
18	GOOD	Training	-340.0108681	-12.98109355	-16.7930519	-175.6851773	0.2920817989	0.0409672523	-0.004401981
20	GOOD	Training	1178.6360003	-114.1446381	-5.71271533	-81.37628428	0.0064651167	-0.318735656	-0.120126295
23	BAD	Training	-3015.826554	45.496077049	6.5969881112	-393.9696867	0.8434918197	0.2002559472	-0.0234644
27	BAD	Training	647.92427295	45.526409332	0.2060713613	-1.736804312	-0.087564419	0.3828626381	-0.076428983
28	BAD	Training	-2331.969564	45.482267145	9.539588982	149.29748575	-0.258712307	0.4084688316	-0.057425217
32	BAD	Training	1110.549478	45.481412652	9.692744135	173.94633371	-0.309896253	0.1897807551	0.1005481727
33	GOOD	Training	545.08163682	36.83648222	11.02376959	-68.08890553	0.3480580578	0.1435364586	-0.069774713
34	BAD	Training	1153.6816932	45.543853482	-3.455710358	2.0682952872	0.1741396938	0.3336479119	-0.056667203

*5 Columns of FPC Scores NOT shown

Predict Wafer Condition by Fitting Neural Model to FPC Scores

Predict Wafer Condition by Fitting Logistic Model to FPC Scores

* "LASSO" stands for Least Absolute Shrinkage and Selection Operator

Results of Fitting Logistic and Neural Models

Sinomial Logistic Regression with Validation Column

Model Summary						
Response	Condition					
Distribution	Binomial					
Estimation Method	Logistic Reg	ression				
Validation Method	Validation C	olumn	⊿ 💌 Neural			
Probability Model Link	Logit		Validation Column: Validatio	on		
Measure	Training	Validation	ModelLounch			
Number of rows	1000	500				
Sum of Frequencies	1000	500	Model NTanH(1)N	lLinear(1)l	NGaussian(1)NBoost	(16)
-LogLikelihood	228.54132	114.45861	⊿ Training		⊿ Validation	
Number of Parameters	13	13				
BIC	546.88346	309.70713	△ Condition		△ Condition	
AICc	483.45181	255.6662	Measures	Value	Measures	Valu
Generalized RSquare	0.4523866	0.4555533	Generalized RSquare	0.5325325	Generalized RSquare	0.560799
			Entropy RSquare	0.4432134	Entropy RSquare	0.470725
			RMSE	0.2428032	RMSE	0.242168
			Mean Abs Dev	0.1309093	Mean Abs Dev	0.128839
			Misclassification Rate	0.074	Misclassification Rate	0.07
			-LogLikelihood	200.94695	-LogLikelihood	96.04242
			Sum Freq	1000	Sum Freg	50

		GenReg Binom 3-way Mo	st Likely Condition			BN 1-1-1(16) Most Likely Condition		
Validation	Condition	GOOD	BAD	Validation	Condition	GOOD	BAD	
Training	GOOD	864	19	Training	GOOD	872	11	
	BAD	74	43		BAD	63	54	
Validation	GOOD	433	8	Validation	GOOD	437	4	
	BAD	42	17		BAD	33	26	
Test	GOOD	428	13	Test	GOOD	434	7	
	BAD	37	22		BAD	42	17	

Table of Neural Model Predictions of Condition

\triangleleft	18/0 Cols 💌			Probability(BN 1-1-1(16) Most	
	F	Condition	Validation	Condition=GOOD)	Likely Condition	
	$\langle $	GOOD	Training	1	GOOD	Model these
		BAD	Validation		BAD	
			Test			probabilities
						to develop
						decision tree
0	1564	GOOD	Tost	0.9961988532	GOOD	"stoplight."
0	1565	GOOD	Tost	0.93015687312	GOOD	
<u> </u>	1505	000D	Test	0.9415007512	0000	
0	1566	GOOD	Test	0.9670452594	GOOD	
0	1567	GOOD	Test	0.5550716285	GOOD	Just misses
+	1568	BAD	Test	0.4930775442	BAD	being "Good"
+	1569	BAD	Test	0.5335959152	GOOD	prediction
0	1570	GOOD	Test	0.6131324314	GOOD	•
+	1571	BAD	Test	0.8668675093	GOOD	Not nearly
+	1572	BAD	Test	0.2583111765	BAD	a "Good"
0	1573	GOOD	Test	0.8699599618	GOOD	prediction
+	1574	BAD	Test	0.7201964039	GOOD	•
0	1575	GOOD	Test	0.99613207	GOOD	
+	1576	BAD	Test	0.5647955597	GOOD	
0	1577	GOOD	Test	0.9891191688	GOOD	
0	1578	GOOD	Test	0.987960478	GOOD	
0	1579	GOOD	Test	0.9750283598	GOOD	

Want to Predict Likely Failed Wafers – Decision Tree Fit to Neural Network Probability Predictions Built from Functional Principal Component Scores for Five Anodic Bonding Sensors

Table of Model Predictions and Stoplight Rule

< </th <th>18/0 Cols 💌 F</th> <th>Condition</th> <th>Validation</th> <th>Probability(Condition=GOOD)</th> <th>BN 1-1-1(16) Most Likely Condition</th> <th>BN Stoplight Rule</th>	18/0 Cols 💌 F	Condition	Validation	Probability(Condition=GOOD)	BN 1-1-1(16) Most Likely Condition	BN Stoplight Rule
		GOOD	Training	1	GOOD	GOOD
		BAD	Validation		BAD	INSPECT
			Test	0.06		BAD
0	1564	GOOD	Test	0.9961988532	GOOD	GOOD
0	1565	GOOD	Test	0.9415687312	GOOD	GOOD
0	1566	GOOD	Test	0.9670452594	GOOD	GOOD
0	1567	GOOD	Test	0.5550716285	GOOD	INSPECT
+	1568	BAD	Test	0.4930775442	BAD	INSPECT
+	1569	BAD	Test	0.5335959152	GOOD	INSPECT
0	1570	GOOD	Test	0.6131324314	GOOD	INSPECT
+	1571	BAD	Test	0.8668675093	GOOD	GOOD
+	1572	BAD	Test	0.2583111765	BAD	BAD
0	1573	GOOD	Test	0.8699599618	GOOD	GOOD
+	1574	BAD	Test	0.7201964039	GOOD	INSPECT
0	1575	GOOD	Test	0.99613207	GOOD	GOOD
+	1576	BAD	Test	0.5647955597	GOOD	INSPECT
0	1577	GOOD	Test	0.9891191688	GOOD	GOOD
0	1578	GOOD	Test	0.987960478	GOOD	GOOD
0	1579	GOOD	Test	0.9750283598	GOOD	GOOD

Percentage Wafers in Each Classification by Training-Validation-Test Group - AND Tabulation of Actual by Predicted Condition

Scatterplot Actual vs. Prediction in Test Group & Tabulation of Actual by Predicted Condition

Validation = Test

		BN S	toplight Ru	le	GR Stoplight Rule		
Validation	Condition	GOOD	INSPECT	BAD	GOOD	INSPECT	BAD
Test	GOOD	389	49	3	393	37	11
	BAD	15	31	13	17	21	21

BN gets fewer correct, but also fewer wrong: 3.6% misclassified

GR gets more correct, but also more wrong: 5.6% misclassified

Functional Data Analysis Performance Tips

- When there are 1000s of batches with 1000s of measurements things can slow down quite a bit.
- Try using a Training set with dozens or a 100 or so batches.
 - Place the remaining batches in Validation.
 - You will still get FPC for all the batches, but the mixed model that is fit behind the scenes will only use the training batches.
- Try subsampling down to every 10th or 20th measurement. Often you have more measurements than you need.
- Use the subset of the data to 'fail fast' in the modeling process.
- You can always go back and refit the better models to a larger version of the data.

Summary

- Functional data shows up in many forms such as sensor data, spectral data, simulation data - almost any response in a longitudinal order
- These data are often summarized to allow for "landmark" analysis. This approach does not take advantage of all the data that has been collected and can lead to missing out on effects of the shape of data.
- When Functional Data Analysis of a response is combined with Design of Experiments one can model the shape of the data stream as a function of the design factors.
- One can use Machine Learning methods to fit the FPC scores derived from data streams (that characterize the run-to-run variation) to build predictive models.

10-factor Agent Transport & Dispersion Simulation

- Able to model Concentration at a particular time,
- or Dosage *at end of time,*
- but *NOT* Concentration *shape over time*
- Profs. Jeff Wu & Roshan Joseph from Georgia Tech ISyE suggested using Functional Data Analysis

Complex Case Study using Simulation Data 128-Trial Space-Filling DOE in Six Factors + Time

128 Computer Simulations Split into 3 Subsets:90 Training, 30 Validation(Tune), and 8 Test

128 Unique-Trial Space-Filling Design of Experiments

	Trial	X1	X2	Х3	X4	X5	X6
101	101	0.244	0.469	0.000	0.393	0.500	0.000
102	102	0.983	0.563	0.638	0.543	0.500	0.500
103	103	0.031	0.094	0.234	0.259	0.625	0.500
104	104	0.158	0.719	0.170	0.836	1.000	1.000
105	105	0.638	0.188	0.894	0.031	0.750	0.500
106	106	0.228	0.813	0.170	0.039	0.750	0.000
107	107	0.858	0.031	0.468	0.660	0.375	0.500
108	108	0.787	0.938	0.404	0.552	0.125	0.000
109	109	0.220	0.094	0.064	0.560	0.125	0.500
110	110	0.606	0.906	1.000	0.504	0.625	0.500
111	111	0.488	0.938	0.894	0.646	0.125	1.000
112	112	0.433	0.375	0.638	0.521	0.000	1.000

Y vs Time Data for Each Trial

128 Simulations Split into 3 Subsets: 90 Training, 30 Validation(Tune), and 8 Test

Model Selection

Fit Statistics	
Pairs	65
-2 Log Likelihood	-119076.5
AICc	-118547.3
BIC	-116504
GCV	0.0002135
Y Std Dev	0.003181

Legend

Fourier Basis Model on Initial Data

90 Training, 30 Validation, 8 Test

FPC	Eigenvalue	20	40	60	80	Percent	Cumulativ	e
1	0.00771					42.8%	42.8%	
2	0.00514					28.5%	71.3%	
3	0.00240					13.3%	84.6%	
4	0.00155					8.61%	93.2%	
5	0.00054]				3.02%	96.2%	
6	0.00032					1.78%	98%	
7	0.00019					1.06%	99.1%	

Function Summaries								
Trial	Validation	FPC 1	FPC 2	FPC 3	FPC 4	FPC 5	FPC 6	FPC 7
1	Training	0.0643203	-0.079624	-0.076694	-0.044372	-0.022896	0.0048829	0.0191508
3	Training	0.0132317	0.1034896	0.0192129	-0.027173	-0.016538	0.0118134	0.0020169
4	Training	0.049788	0.0464589	0.0466466	0.0026321	-0.026482	-0.012951	-0.003611
5	Training	0.065293	-0.053398	-0.022798	0.0007321	0.0107226	-0.00163	-0.008597
6	Training	0.0397146	-0.036641	-0.011642	-0.00407	0.0077336	-0.028904	-0.036985
7	Training	0.0466078	0.0049868	0.0310672	0.0081664	-0.015096	-0.031369	-0.021895
8	Training	0.0940523	-0.004455	0.062271	0.060297	0.0065529	-0.00089	0.0111631

Functional Data *Curve* = Σ("Y_i FPC Score" * "Y_i Eigenfunction") + "Y Mean Formula"

Functional Data *Curve* = $\Sigma("Y_i \text{ FPC Score Prediction Formula" * "Y_i Eigenfunction") + "Y Mean Formula"$

Functional Data Curve

DoE Factors

Test Trial #2

Overlay of simulation data on top of Functional Data Curve

FDA, Neural, & Gaussian Process Model Predictions - All Fit to Same 90-Trial *Training* Subset -Overlaid on Y vs. Time

Copyright © 2018, SAS Institute, Inc. All rights reserved.

Time

erved.

Summary

- Functional data shows up in many forms such as sensor data, spectral data, simulation data - almost any response in a longitudinal order
- These data are often summarized to allow for "landmark" analysis. This approach does not take advantage of all the data that has been collected and can lead to missing out on effects of the shape of data.
- When Functional Data Analysis of a response is combined with Design of Experiments one can model the shape of the data stream as a function of the design factors.
- One can use Machine Learning methods to fit the FPC scores derived from data streams (that characterize the run-to-run variation) to build predictive models.

Links to additional content at www.jmp.com/fedgov

Modeling Streamed Sensor Data with Functional Data Analysis

MORS Data Science & Artificial Intelligence CoP live virtual presentation at 1130 EST on January 27th: •Weblink: https://www.gotomeet.me/MORSMeeting50a/data-science-and-ai

•Conference Line: +1 (669) 224-3412

•Access Code: 716-833-909

•Recording will be posted here as soon as it becomes available.

Efficient M&S Using Sequential DOE Methods

MORS Modeling & Simulation CoP virtual presentation on 11 March 2020: Watch Video

Moving from Data to Decision <u>Faster</u> - Using JMP®

a 5-minute video highlighting JMP end-to-end analytic workflow USCENTCOM DATA SYMPOSIUM Feb. 2-4. Watch Video

Recordings from Nine December 2020 Webcasts - Using JMP 15 and JMP PRO 15 Click the "<u>underlined blue title</u>" in each cell to go to the video recording.

Graph Builder	Text Exploration	Functional Data Analysis	
Tour of Graph Elements Video GB-1	Intro to Visualization and Modeling	Functional DOE – with Target Function Video FDA-1	
Modeling with GB Video GB-2	Prepping the Data Video TXT-2	Prepping the Data Video FDA-2	
Adding Maps, Images, and Animation Video GB-3	Analyses with JMP Pro Video TXT-3	<i>Functional Machine Learning</i> <u>Video FDA-3</u>	

Recording and Slides from August 21st MORS-Talk **Text Analytics - Learning from Unstructured Data**

Watch Video or Download Slides

Recordings from August 13th Statistically Speaking

Demystifying Machine Learning and Artificial Intelligence in the Defense Community

Keynote Video - Dr. Laura Freeman, Director of the Intelligent Systems Lab at Virginia Tech's Hume Center for National Security & Technology Panel Discussion Video - Dr. Laura Freeman, Dr Ray Hill from AFIT, and Dr. James Wisnowski from Adsurgo LLC

Recordings from Nine August 2020 Webcasts - Using JMP 15 and JMP PRO 15 Click the "<u>underlined blue title</u>" in each cell to go to the video recording.

Data Wrangling	Machine Learning	Design of Experiments
Getting Data into JMP Video DW-1	Intro & Honest Assessment Video ML-1	Custom DOE – Making Design Fit Problem Video DOE-1
Prepping Data Video DW-2	ML Analyses with JMP Video ML-2	Screening Designs – Get More for Less Video DOE-2
Using Data Table Tools Addin Video DW-3	ML Analyses with JMP Pro Video ML-3	Comparing Designs & Fixing Broken Designs Video DOE-3

JMP Discovered webcast on May 19, 2020 **Modeling Streamed Sensor Data with Functional Data Analysis**

View full 1-hour video: or Download Slides Pressed for time? View short case-studies featured in full 1-hour webcast. Functional Data Analysis – DOE (5-min) Case 1 - Predicting Shape of Sensor Stream using DOE & Golden Curve Analysis Functional Data Analysis – ML (7-min) Case 2 - Using the Sensor Stream as an Input to a Machine Learning Model Thank You. Questions?

Webcast recordings at www.jmp.com/fedgov Thanks to my JMP colleagues upon whose work much of this presentation is based:

> Chris Gotwalt Ryan Parker Brady Brady Pete Hersh Phil Kay

Tom Donnelly, PhD, CAP Principal System Engineer tom.donnelly@jmp.com 302-489-9291

ABSTRACT:

Sensors that record sequences of measurements are now embedded in many systems. There is information in the shapes of the sensor stream that is highly predictive of the likelihood of a system failure or performance. These data are often being used inefficiently due to lack of knowledge and tools for how to properly leverage it. In this presentation we will show how to fit splines to data streams and extract features called functional principal component scores. This method is called Functional Data Analysis. Then, we use these features as inputs into machine learning models like neural networks. Answering a wide variety of questions becomes a two-step process of functional feature extraction followed by modeling using those features as inputs. Additionally, it will be shown how when combined with Design of Experiments, one can then model the principal component scores to predict the shapes of data streams as functions of the factors in the design.

