

Imperial College London

Industrial data science: a review of machine learning applications for the chemical and process industries

Max Mowbray

max.mowbray@manchester.ac.uk

Department of Chemical Engineering

The University of Manchester

1. Overview

Overview

Imperial College London

The University of Manchester

Work conducted collaboratively between The University of Manchester, Imperial College London

and Solvay

• Review paper into major application and challenges of

Machine Learning (ML) in process industries [1]

Reaction Chemistry & Engineering	C ROYAL SOCIETY	
REVIEW	View Article Online View Journal View Issue	
Check for updates Cite this: React. Chem. Eng., 2022, 7, 1471	Industrial data science – a review of machine learning applications for chemical and process industries†	
	Max Mowbray, 😳 a Mattia Vallerio, 🕲 b Carlos Perez-Galvan, 🕲 b Dongda Zhang, 🧿 ac Antonio Del Rio Chanona 🕲 c and Francisco J. Navarro-Brull 🕲 + bc	
Received 1st December 2021, Accepted 21st February 2022 DOI: 10.1039/d1re00541c rsc.li/reaction-engineering	In the literature, machine learning (ML) and artificial intelligence (AI) applications tend to start with examples that are irrelevant to process engineers (e.g. classification of images between cats and dogs, house pricing, types of flowers, etc.). However, process engineering principles are also based on pseudo-empirical correlations and heuristics, which are a form of ML. In this work, industrial data science fundamentals will be explained and linked with commonly-known examples in process engineering, followed by a review of industrial applications using state-of-art ML techniques.	
rsc.u/reaction=erigineering	industrial applications using state-or-art mellectiniques.	

Considered contributions and challenges in application across the hierarchical control structure

 Focus on process level
 Paper provides discussion on upper-level decision functions
 Focus on process level
 Process control and online optimization
 Field
 Supply chain and production scheduling
 Supply chain and production scheduling

Imperial College London

The University of Manchester

Machine Learning has been widely applied within process systems, historically under a different

 $u_{s,L}$

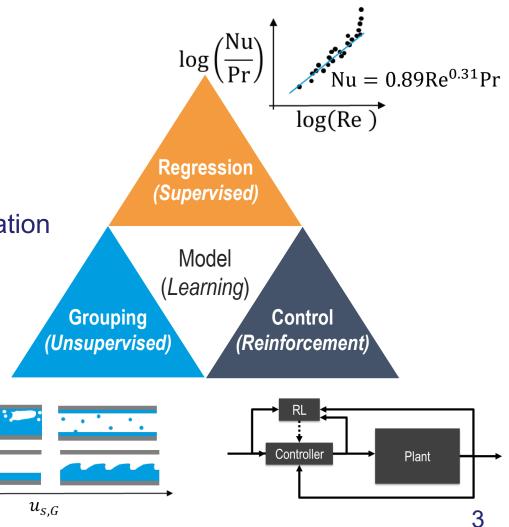
disguise

- Feature selection and engineering (dimensional analysis)
- Data pre-processing (signal processing) and partitioning
- Learning (statistical estimation and optimisation) and evaluation

Process engineering cover all forms of analytics:

- Descriptive, diagnostic, predictive and prescriptive
- Increasingly flexible model classes, handling

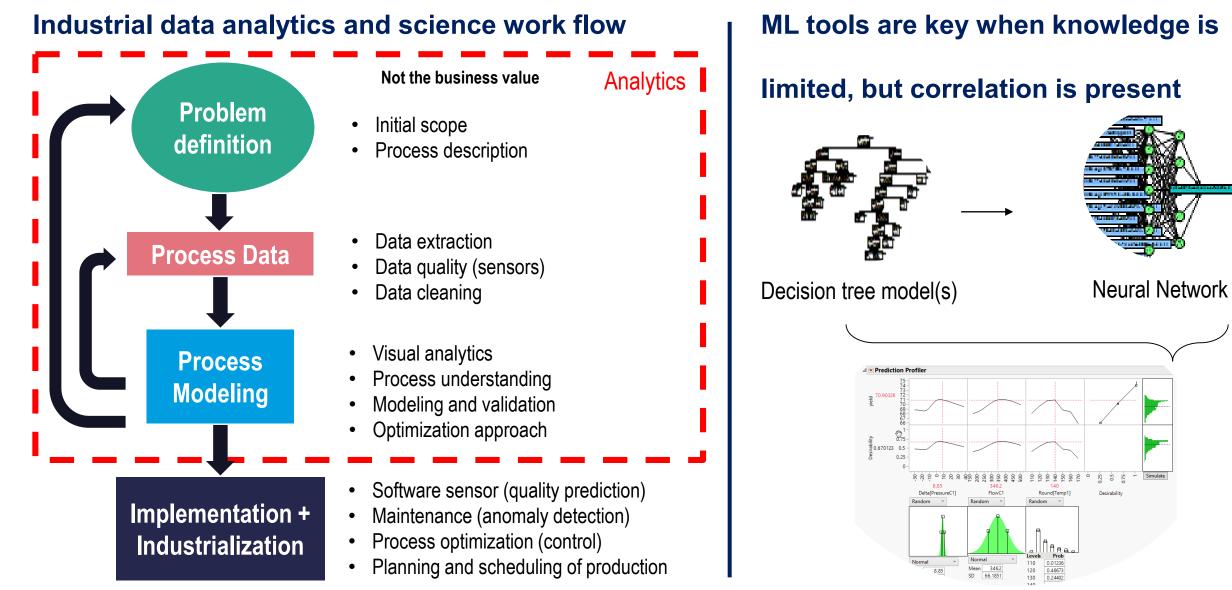
uncertainty and data visualisation techniques



Overview

Imperial College London

The University of Manchester

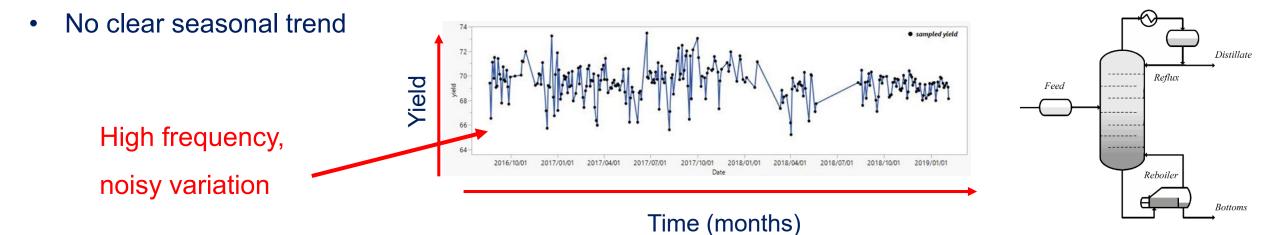


2. Case Study 1: Diagnosing yield variation in a distillation column

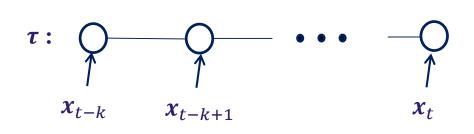
Imperial College London

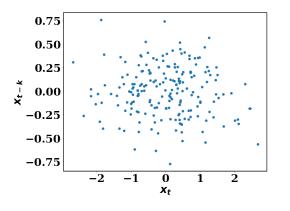
The University of Manchester

Problem definition first consider trends in yield: variation driven by season or dynamics



• Existing data collected at supposed steady state





 $\begin{array}{c}
6 \\
4 \\
2 \\
x \\
0 \\
-2 \\
-4 \\
-2 \\
0 \\
x_t
\end{array}$

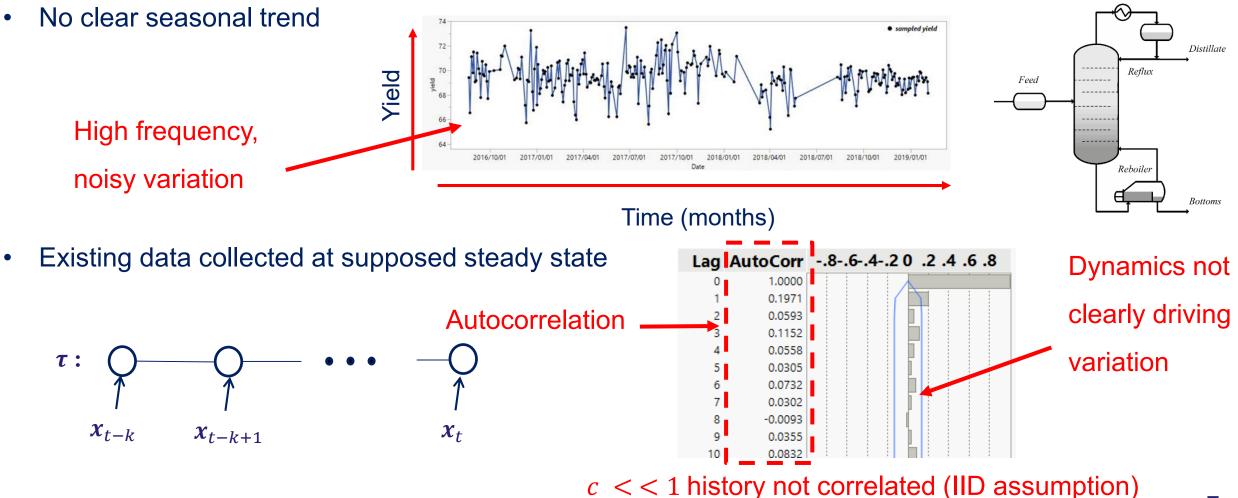
History uncorrelated

History correlated

Imperial College London

The University of Manchester

Problem definition first consider trends in yield: variation driven by season or dynamics



Imperial College London

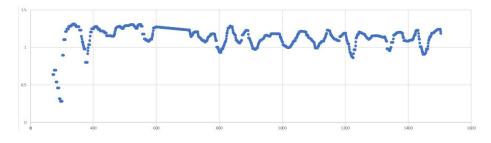
The University of Manchester

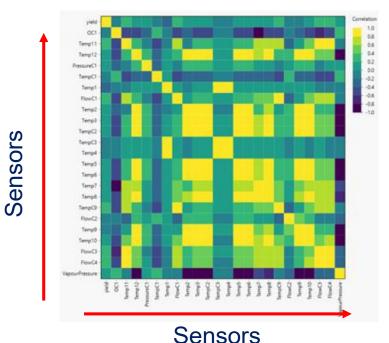
Data pre-processing; first understand the data at hand

- Data is high dimensional sensor measurements
 - Quantify correlation between two sensors' data

Data visualisation powerful to quickly understand the data

- Pearson's correlation coefficient
- 2D visualisation of very high dimensional data
 - The more yellow the pixel the higher the correlation
- Mutlicollinear data causes issues in model construction
 - Dimensionality reduction





Imperial College London

The University of Manchester

Data pre-processing: data partitioning strategy is key for ensuring adequate validation of model

- Subsampling time-series considers the data to I.I.D. (dynamics are not driving variability, rarely the case!)
- K-fold cross validation designs can ensure against mismatch in data distributions

Data processing: k-fold cross validation

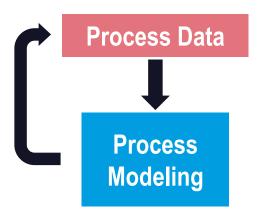
 K-fold cross validation:
 D 1
 D 2
 D 3
 D 4
 D 5
 D 6
 Training Set

 Validation Set

Imperial College London

The University of Manchester

Generate knowledge by modelling; screen the data to select variables

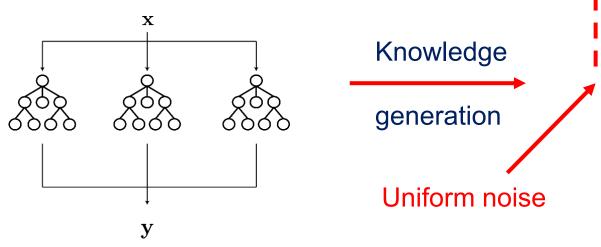


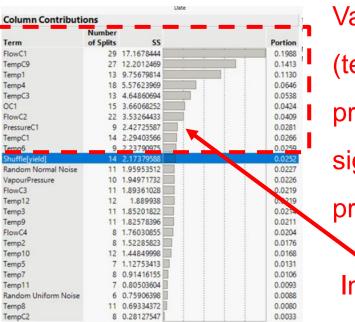
Identifying significant variables may be an iterative process:

1. Leverage feature importance techniques with model

structure cross validation...

Random forests: robust and interpretable models





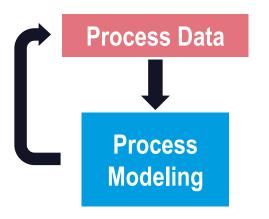
Variables (temp., flow, pressure) significant to prediction

Importance

Imperial College London

The University of Manchester

Generate knowledge by modelling; screen the data to select variables



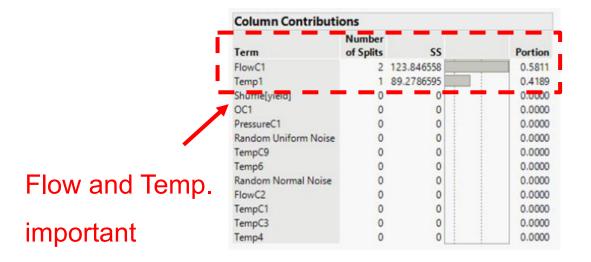
Identifying significant variables may be an iterative process:

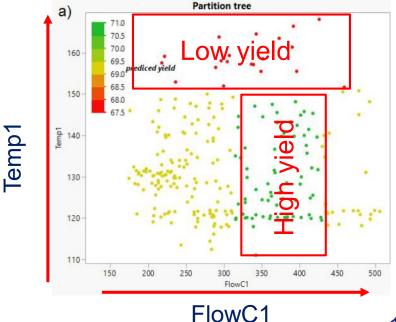
Knowledge

generation

2. Repeat and analyse new model

Updated random forest model: feature importance

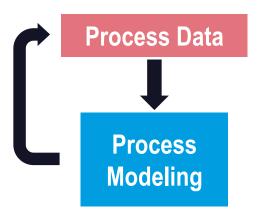




Imperial College London

The University of Manchester

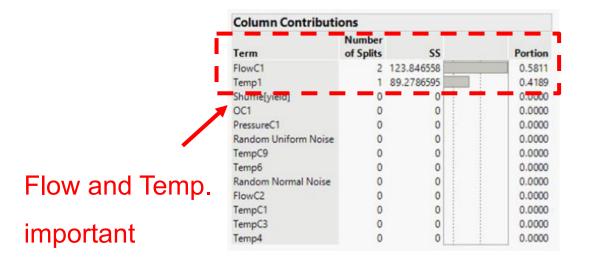
Generate knowledge by modelling; screen the data to select variables

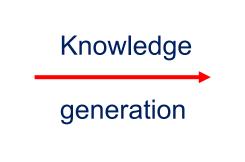


Identifying significant variables may be an iterative process:

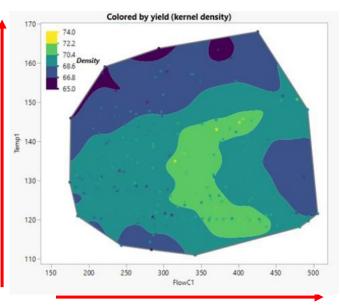
2. Repeat and analyse new model

Updated random forest model: feature importance





Temp1



FlowC1

Imperial College London

The University of Manchester

Random forests are interpretable and good at screening, but what about predictive accuracy?

 Having identified important sensors, we can search over model classes and structures

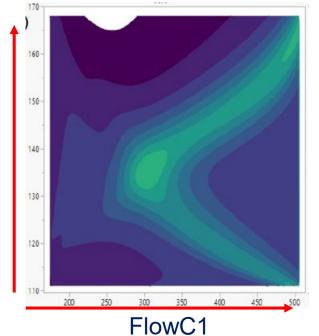
Manual, random or automated search

• Neural networks are a go-to

Process

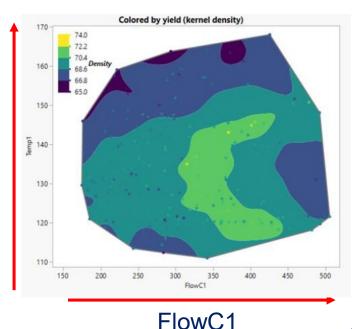
Modeling

- Improved generalisation accuracy
- Smooth relationship identified



Temp1

Temp1



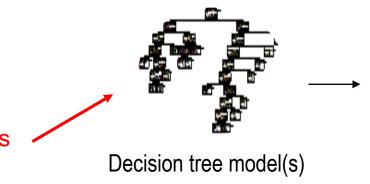
Summary: Case Study 1

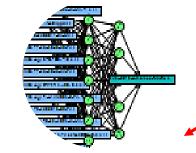
Imperial College London

The University of Manchester

Yield variation: diagnostic summary

• Two step approach:





approximation

function

Flexible

Important process variables

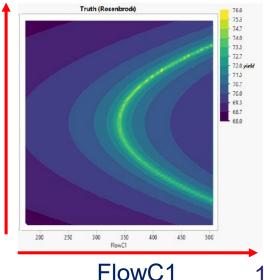
Decision tree model(s) <u>JMP Add ins</u>

Synthetic dataset with known ground truth and assumed steady state

- Conceptual demonstration of correlation analysis and screening
- Future work to identify dynamics
- Real world data key to further exploration of ML

Implementation + Industrialization

Application 1: demonstration



Temp1

3. Case Study 2: Data-driven soft-sensing of product quality in batch processing

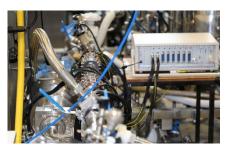
Predictive analytics for estimating viscosity in a batch process handling non-Newtonian fluid [4]

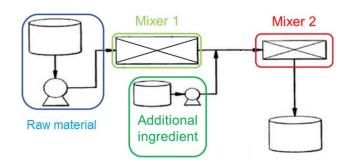
- Real-time PAT is expensive and difficult to retrofit
- Offline measurement slow and has standard error

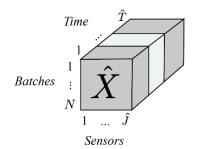
Emulsification process (batch processes) for personal care

product manufacturing

- 28 online sensors (temperature, pressure, flowrate)
- Sensor data recorded once per second (in total 2 hours)
- Available datasets: 30 batches × 28 sensors × 7673 time steps

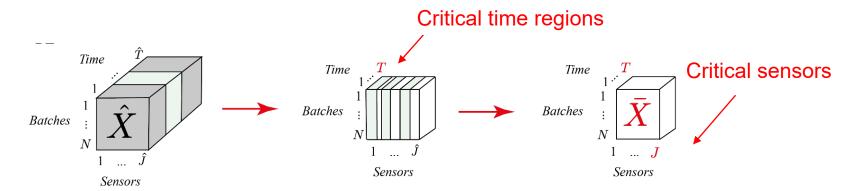




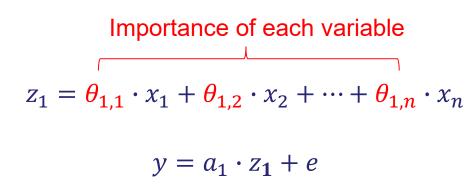


[4] Mowbray *et al.* (2022b)

Challenge 1: Identifying the spatio-temporal trajectories that influence product quality



Projection to latent structures (PLS)

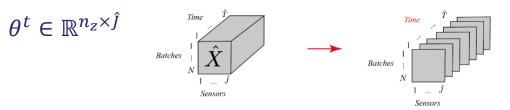


 Screen data to find correlations relevant to prediction

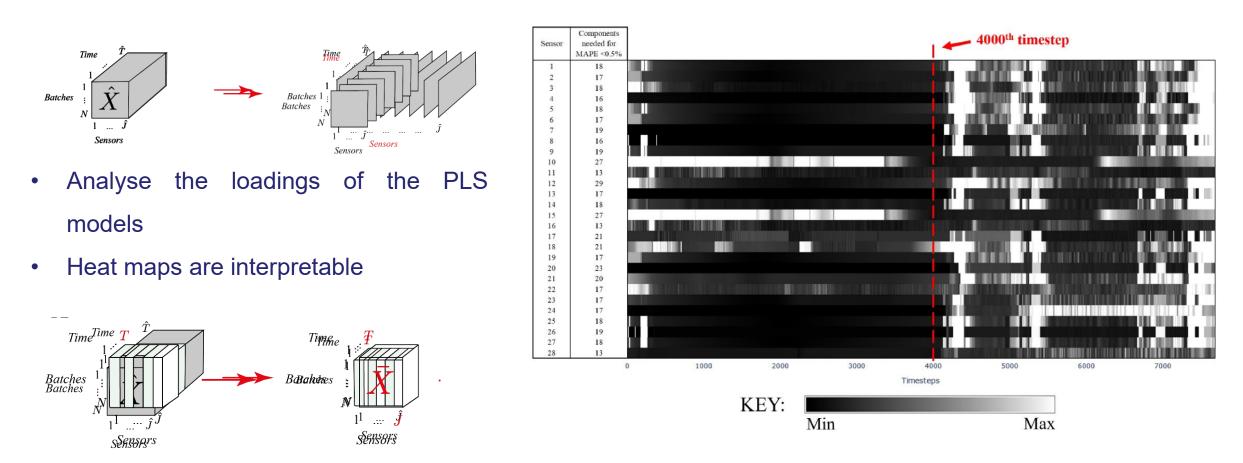
Solution: Loadings analysis of PLS models ^[2]

• Construct a PLS model for each sensor in time, $\theta^j \in \mathbb{R}^{n_z \times \hat{T}}$

· Construct a PLS model for the sensors at each timestep,

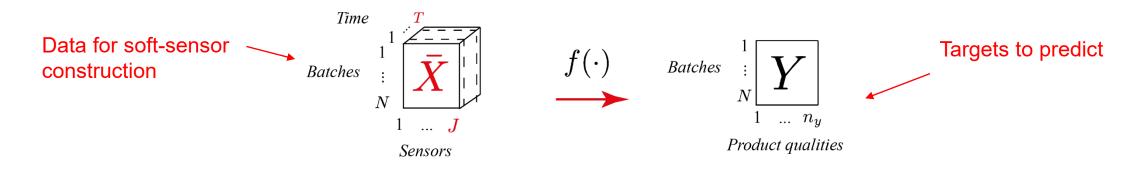


Challenge 1: Identifying the spatio-temporal trajectories that influence viscosity

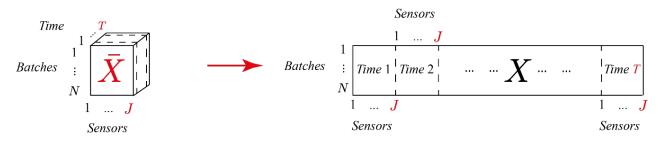


Critical time region: 5-15 minute period from 2 hours ; Critical sensors: 8 from 28 sensors

Challenge 2: Feature extraction and dimensionality reduction

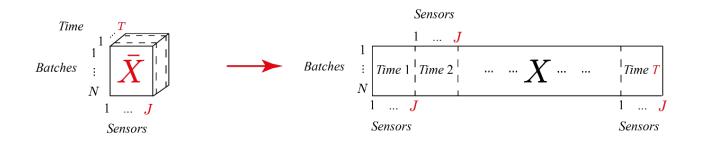


Partial Solution: Multiway methods



• Representation that allows for extraction of important information

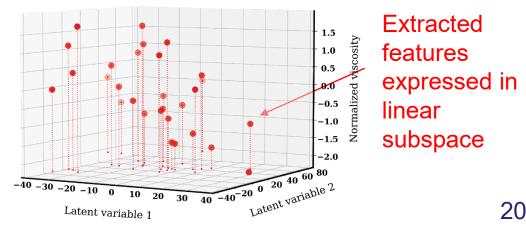
Challenge 2: Feature extraction and dimensionality reduction



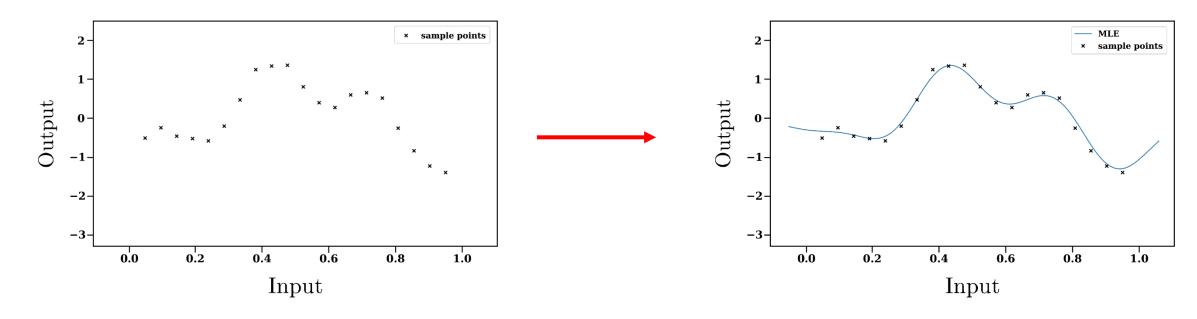
Solution: Feature extraction using multiway PLS or autoencoders*

- Reduced dimension representation of spatio-temporal trajectories correlated to end-product quality
- Can now identify a map to product quality, $f: \mathbb{R}^{n_z} \to \mathbb{R}$

Number of latent variables enters model structure selection problem

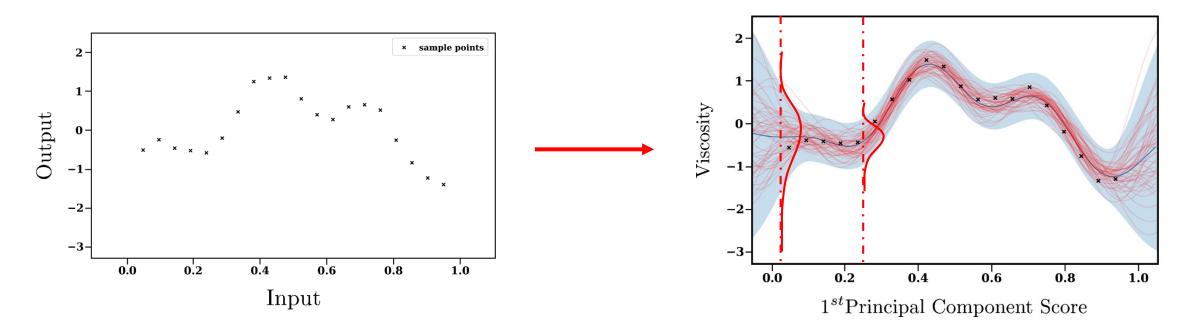


Challenge 3: Expressing nonlinearity and prediction uncertainty



- Classical regression practice identifies deterministic models
- Our data has moderate noise in the measurement

Challenge 3: Expressing nonlinearity and prediction uncertainty



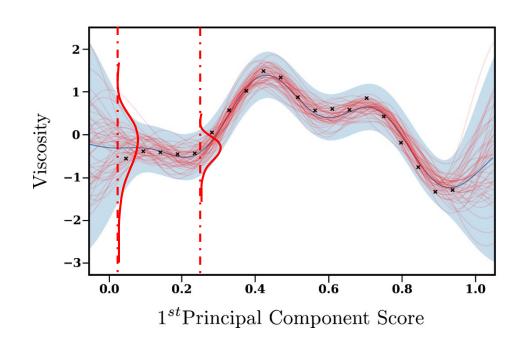
- Classical regression practice identifies deterministic models
- Our data has moderate noise in the measurement

Challenge 3: Expressing nonlinearity and prediction uncertainty

Gaussian Processes (GPs):

- $f_{GP}(\mathbf{z}) \sim GP\left(m(\mathbf{z}), k(\mathbf{z}, \mathbf{z}')\right)$
- Exploit statistical relationships in data
 - Bayes' Rule: $y_i \sim p(y_i | \mathbf{z}_i^*, \mathcal{D}) = \mathcal{N}(\bar{\mu}, \Sigma)$
- Uncertainty reflects data variation and lack of

information



Model structure selection via cross-validation and subsequent model testing

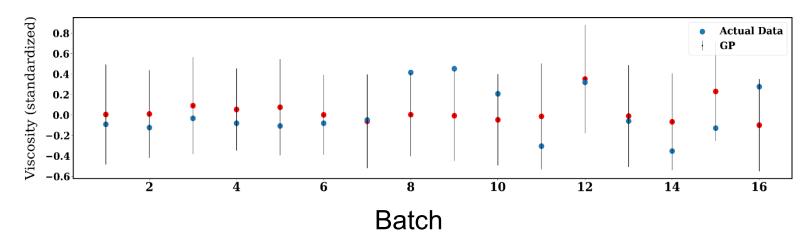
Dataset	Season	Use	Batches
А	1	Train	30
В	2	Test	16

1. Cross validation		2. Test on Dataset B to
on Dataset A to	>	evaluate prediction
identify model structure		same variant but
for each class		different season

Cross-validation and test results

- GP performs well in validation
 - with average error of 10%
- Uncertainty estimate covers

residual - indicating it is reliable



Data visualisation is an effective step to analyse historical datasets

• Screen critical time region and sensors (*knowledge informed* dimensionality reduction)

Probabilistic machine learning methods are excellent for soft-sensor design

- A high accuracy soft-sensor provides avenue to monitor
- Reliable uncertainty estimates to guide process engineers

Potential for industrial application

- Fast prediction online of critical product quality vs slow offline measurement
- Investigating methodologies to transfer soft-sensors between processes.

4. Conclusions

Imperial College London

The University of Manchester

Here we present an intuitive data focused framework for problem solving

• Problem definition; data processing; modelling; implementation

Machine Learning tools can be used for descriptive, diagnostic and predictive analysis

- Correlation analysis for quick screening of tags (sensors)
- Mapping identification for steady state behaviour as well as spatio-temporal trajectories to final product qualities
- Future work will consider methodology for identification of dynamic behaviour

The litmus test of Machine Learning is practical implementation to real processes and data

References

Imperial College London

The University of Manchester

[1] Mowbray, M., Vallerio, M., Perez-Galvan, C., Zhang, D., Chanona, A. D. R., & Navarro-Brull, F. J. (2022a). Industrial data science–a review of machine learning applications for chemical and process industries. Reaction Chemistry & Engineering.

[2] Beck, D. A., Carothers, J. M., Subramanian, V. R., & Pfaendtner, J. (2016). Data science: Accelerating innovation and discovery in chemical engineering. *AIChE Journal*, 62(5), 1402-1416.

[3] Shang, C., & You, F. (2019). Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era. Engineering, 5(6), 1010-1016.

[4] Mowbray, M., Kay, H., Kay, S., Caetano, P. C., Hicks, A., Mendoza, C., ... & Zhang, D. (2022b). Probabilistic machine learning based soft-sensors for product quality prediction in batch processes. Chemometrics and Intelligent Laboratory Systems, 228, 104616.

Thank you for listening!

@MaxMowbray3

@DongdaZhang

(a)AntonioE89

Phil Martin

Francisco Navarro-Brull

