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1. Overview
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Work conducted collaboratively between The University of Manchester, Imperial College London 

and Solvay 
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• Review paper into major application and challenges of 

Machine Learning (ML) in process industries [1]

Considered contributions and challenges in application across the hierarchical control structure

• Focus on process level

• Paper provides discussion on 

upper-level decision functions

Overview

[1] Mowbray et al. (2022a) 



Machine Learning has been widely applied within process systems, historically under a different 

disguise  
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• Feature selection and engineering (dimensional analysis)

• Data pre-processing (signal processing) and partitioning

• Learning (statistical estimation and optimisation) and evaluation

Regression
(Supervised)

Grouping
(Unsupervised)

Control
(Reinforcement)

Model
(Learning)

Nu = 0.89Re0.31Pr

Process engineering cover all forms of analytics:

• Descriptive, diagnostic, predictive and prescriptive

• Increasingly flexible model classes, handling 

uncertainty and data visualisation techniques

Overview
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Not the business value

• Software sensor (quality prediction)
• Maintenance (anomaly detection)
• Process optimization (control)
• Planning and scheduling of production

Process Data

Process
Modeling

Implementation + 
Industrialization

Problem 
definition

Analytics

• Data extraction
• Data quality (sensors)
• Data cleaning

• Visual analytics
• Process understanding
• Modeling and validation
• Optimization approach

Industrial data analytics and science work flow

Decision tree model(s) Neural Network

ML tools are key when knowledge is 

limited, but correlation is present

Overview

• Initial scope
• Process description



2. Case Study 1: Diagnosing yield 

variation in a distillation column
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Diagnosing yield variation

Problem definition first consider trends in yield: variation driven by season or dynamics

• No clear seasonal trend

• Existing data collected at supposed steady state 

History uncorrelated History correlated

Time (months)
Yi

el
d

High frequency, 

noisy variation

𝝉𝝉 :

𝒙𝒙𝑡𝑡−𝑘𝑘 𝒙𝒙𝑡𝑡−𝑘𝑘+1 𝒙𝒙𝑡𝑡
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Diagnosing yield variation

Problem definition first consider trends in yield: variation driven by season or dynamics

• No clear seasonal trend

• Existing data collected at supposed steady state 
Time (months)

Yi
el

d

𝝉𝝉 :

𝒙𝒙𝑡𝑡−𝑘𝑘 𝒙𝒙𝑡𝑡−𝑘𝑘+1 𝒙𝒙𝑡𝑡

High frequency, 

noisy variation

𝑐𝑐 < < 1 history not correlated (IID assumption) 

Dynamics not 

clearly driving

variation
Autocorrelation



• Pearson’s correlation coefficient

• 2D visualisation of very high dimensional data

• The more yellow the pixel the higher the correlation

• Mutlicollinear data causes issues in model construction

• Dimensionality reduction
8

Diagnosing yield variation

Data pre-processing; first understand the data at hand

Se
ns

or
s

Sensors

• Data is high dimensional sensor measurements

• Quantify correlation between two sensors’  data

Data visualisation powerful to quickly understand the data
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Diagnosing yield variation

Data processing: k-fold cross validation

• K-fold cross validation:
Validation Set

Training Set
D 1 D 2 D 3 D 4 D 5 D 6D 1 D 2 D 3 D 4 D 5 D 6D 1 D 2 D 3 D 4 D 5 D 6D 1 D 2 D 3 D 4 D 5 D 6D 1 D 2 D 3 D 4 D 5 D 6

Data pre-processing: data partitioning strategy is key for ensuring adequate validation of model 

• Subsampling time-series considers the data to I.I.D. (dynamics are not driving variability, rarely the case!)

• K-fold cross validation designs can ensure against mismatch in data distributions

• Test

• Validation

• Training
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Diagnosing yield variation

Generate knowledge by modelling; screen the data to select variables

Process Data

Process
Modeling

Identifying significant variables may be an iterative process:

1. Leverage feature importance techniques with model 

structure cross validation…
Variables 

(temp., flow, 

pressure) 

significant to 

prediction

Uniform noise Importance

Random forests: robust and interpretable models

Knowledge 

generation
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Diagnosing yield variation

Generate knowledge by modelling; screen the data to select variables

Process Data

Process
Modeling

Identifying significant variables may be an iterative process:

2. Repeat and analyse new model

Flow and Temp. 

important

Knowledge 

generation

Updated random forest model: feature importance

FlowC1

Te
m

p1

Low yield

H
ig

h 
yi

el
d
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Diagnosing yield variation

Generate knowledge by modelling; screen the data to select variables

Process Data

Process
Modeling

Identifying significant variables may be an iterative process:

2. Repeat and analyse new model

Flow and Temp. 

important

Updated random forest model: feature importance

FlowC1

Te
m

p1

Low yield

H
ig

h 
yi

el
dKnowledge 

generation
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Diagnosing yield variation

Random forests are interpretable and good at screening, but what about predictive accuracy?

• Having identified important sensors, we can search over model 

classes and structures
Process
Modeling

FlowC1

Te
m

p1

Manual, random or automated search

• Neural networks are a go-to

• Improved generalisation accuracy

• Smooth relationship identified

FlowC1

Low yield

H
ig

h 
yi

el
d

Te
m

p1



Synthetic dataset with known ground truth and assumed steady state

• Conceptual demonstration of correlation analysis and screening

• Future work to identify dynamics 

• Real world data key to further exploration of ML
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Summary: Case Study 1

Yield variation: diagnostic summary

FlowC1

Te
m

p1

Implementation + 
Industrialization

• Two step approach:

Decision tree model(s) Neural Network
Important process

variables

Flexible function

approximation

JMP Add ins

Application 1: demonstration

https://github.com/industrial-data
https://www.chemistryworld.com/webinars/industrial-data-science-for-chemical-process-perfection/4011242.article


3. Case Study 2: Data-driven soft-sensing 

of product quality in batch processing
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Soft sensing

Emulsification process (batch processes) for personal care 

product manufacturing

• 28 online sensors (temperature, pressure, flowrate)

• Sensor data recorded once per second (in total 2 hours)

• Available datasets: 30 batches × 28 sensors × 7673 time steps

Predictive analytics for estimating viscosity in a batch process handling non-Newtonian fluid [4]

• Real-time PAT is expensive and difficult to retrofit

• Offline measurement slow and has standard error

[4] Mowbray et al. (2022b) 



Soft sensing

Challenge 1: Identifying the spatio-temporal trajectories that influence product quality

Critical time regions

Critical sensors
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Projection to latent structures (PLS)

𝑦𝑦 = 𝑎𝑎1 � 𝑧𝑧𝟏𝟏 + 𝑒𝑒

𝑧𝑧1 = 𝜃𝜃1,1 � 𝑥𝑥1 + 𝜃𝜃1,2 � 𝑥𝑥2 + ⋯+ 𝜃𝜃1,𝑛𝑛 � 𝑥𝑥𝑛𝑛

Importance of each variable

Solution: Loadings analysis of PLS models [2]

• Construct a PLS model for each sensor in time, 𝜃𝜃𝑗𝑗 ∈ ℝ𝑛𝑛𝑧𝑧× �𝑇𝑇

• Construct a PLS model for the sensors at each timestep,

𝜃𝜃𝑡𝑡 ∈ ℝ𝑛𝑛𝑧𝑧×𝐽𝐽
• Screen data to find correlations relevant 

to prediction



Soft sensing

Challenge 1: Identifying the spatio-temporal trajectories that influence viscosity

• Analyse the loadings of the PLS

models

• Heat maps are interpretable
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Critical time region: 5-15 minute period from 2 hours ; Critical sensors: 8 from 28 sensors
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Soft sensing

Challenge 2: Feature extraction and dimensionality reduction 

Data for soft-sensor 
construction

Targets to predict

Partial Solution: Multiway methods

• Representation that allows for extraction of important information



Soft sensing

Challenge 2: Feature extraction and dimensionality reduction 

Solution: Feature extraction using multiway PLS or autoencoders*

Extracted 
features 
expressed in 
linear 
subspace

• Reduced dimension representation of spatio-temporal trajectories correlated to end-product quality

• Can now identify a map to product quality, 𝑓𝑓:ℝ𝑛𝑛𝑧𝑧 → ℝ

Number of latent 
variables enters 
model structure 
selection problem

20
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Soft sensing

Challenge 3: Expressing nonlinearity and prediction uncertainty

• Classical regression practice identifies deterministic models

• Our data has moderate noise in the measurement
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Soft sensing

Challenge 3: Expressing nonlinearity and prediction uncertainty

• Classical regression practice identifies deterministic models

• Our data has moderate noise in the measurement



23

Soft sensing

Challenge 3: Expressing nonlinearity and prediction uncertainty

Gaussian Processes (GPs): 

• 𝑓𝑓𝐺𝐺𝐺𝐺(𝒛𝒛) ∼ 𝐺𝐺𝐺𝐺 𝑚𝑚 𝒛𝒛 , 𝑘𝑘 𝒛𝒛, 𝒛𝒛′

• Exploit statistical relationships in data

• Bayes’ Rule: 𝑦𝑦𝑖𝑖 ∼ 𝑝𝑝 𝑦𝑦𝑖𝑖 𝒛𝒛𝑖𝑖∗,𝒟𝒟 = 𝒩𝒩 �̅�𝜇,𝛴𝛴

• Uncertainty reflects data variation and lack of 

information
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Soft sensing

Model structure selection via cross-validation and subsequent model testing

Dataset Season Use Batches
Α 1 Train 30
B 2 Test 16

1. Cross validation

on Dataset 𝐀𝐀 to

identify model structure

for each class

2. Test on Dataset 𝚩𝚩 to

evaluate prediction

same variant but

different season

Cross-validation and test results

• GP performs well in validation 

with average error of 10%

• Uncertainty estimate covers 

residual – indicating it is reliable

Prediction plots for GP on dataset B

Batch



Data visualisation is an effective step to analyse historical datasets

• Screen critical time region and sensors (knowledge informed dimensionality reduction)

Probabilistic machine learning methods are excellent for soft-sensor design

• A high accuracy soft-sensor provides avenue to monitor

• Reliable uncertainty estimates to guide process engineers

Potential for industrial application

• Fast prediction online of critical product quality vs slow offline measurement

• Investigating methodologies to transfer soft-sensors between processes.
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Summary: Case Study 2



4. Conclusions
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Here we present an intuitive data focused framework for problem solving

• Problem definition; data processing; modelling; implementation

Machine Learning tools can be used for descriptive, diagnostic and predictive analysis

• Correlation analysis for quick screening of tags (sensors)

• Mapping identification for steady state behaviour as well as spatio-temporal trajectories to final 

product qualities

• Future work will consider methodology for identification of dynamic behaviour

The litmus test of Machine Learning is practical implementation to real processes and data

Conclusion
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Thank you for listening!
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