

DoE-Assisted Method Development for the Analysis of Monoclonal Antibodies Charge Variants by Cation-Exchange Chromatography

Giulia Lambiase, PhD

Senior Scientist

BioPharmaceuticals R&D | Biopharmaceutical Development | Analytical Sciences

October 2022

AstraZeneca

Introduction to Design-of-Experiment (DoE)

Application of DoE to analytical method development

2

3

Chemometrics tools for data analysis

Case studies and Key considerations

Analytical characterisation of therapeutic proteins

Monoclonal Antibody (mAb)

The inherent structural complexity of proteins constitutes an analytical challenge. Analytical methods are necessary to support product development, manufacturing and commercialisation.

Why DoE?

• One Factor At a Time (OFAT) approach:

- Variation of one parameter at a time maintaining the other constant:
 - Large experimental runs;
 - No information on factors interactions;
 - Lack of information leads to additional experiments during method validation;
 - Lengthy experimentation may retard the overall process pertaining to drug development.
- DoE:
 - Variation of multiple parameters at a time:
 - Reduction of experimental runs;
 - Comprehensive investigation of the factors interactions leading to better understanding;
 - Development of mathematical models that permit assessment of relevance and statistical significance facilitating method validation;
 - Faster, Cheaper and Smarter experiments → Stronger and Better analytical methods

Main Effects Screening Design

Mobile phase pH •

Central Composite Design

- Flow rate
- **Gradient steepness**
 - Mobile phase salt concentration at t_o ۰
 - Mobile phase buffer system concentration

Main Effects Screening Design

Factors					
Columns: Agilent, Sepax, Phenomenex, Waters					
pH (5.5, 6.0, 6.5)					
Response					
Experimental Peak Capacity (ePC)					
Constant					
C _{buffer} : 20 mM sodium phosphate buffer					
C _{salt(t0)} : 40 mM sodium chloride					
Flow rate: 0.17 mL/min					
gt: 15 min					
g _{shape} : linear, 40-500mM sodium chloride					
Temperature: 25 °C					
Injection Volume: 5 μL					
Sample concentration: 1 mg/mL					
UV: 210 nm, 280 nm					

S

Data generated by Davide Di Girolamo and Ryte Poskute

Microscale Chromatographic Purification of mAbs and BsAbs DoE-assisted method development

MESD Factors				
Capture cycles (4 – 15)				
Capture Flow rate (4 – 16 µL/sec)				
Wash 1 cycles $(1 - 3)$				
Wash 1 Flow rate (4 – 16 µL/sec)				
Wash 2 cycles $(1 - 3)$				
Wash 2 Flow rate (4 – 16 µL/sec)				
Elution cycles (4 – 15)				
Elution Flow rate (4 – 16 μL/sec)				
Final Elution Volume (80 – 120 μ L)				
MESD Response				
%Recovery				

Microscale Chromatographic Purification of mAbs and BsAbs DoE-assisted method development: Main Effect Screening Design

45 40

Actual 30

<u>چ</u> 25

≥ 20

60 55

90 Actual 45

§ 40

<u>}</u>35

8 30

15

لللہ 25 20

mAb-1 Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> t		
Intercept	16.89	1.67	10.09	<.0001*		
Capture cycles (4,15)	5.56	1.67	3.32	0.0031*		
Capture Flow rate (µL/sec)(4,16)	-3.63	1.67	-2.17	0.0410*		
Wash1 cycles (1,3)	2.37	1.67	1.42	0.1701		
Wash1 Flow rate (µL/sec)(4,16)	-2.24	1.67	-1.34	0.1949		
Wash2 cycles (1,3)	-0.31	1.67	-0.18	0.8556		
Wash2 (µL/sec)(4,16)	-2.84	1.67	-1.70	0.1037		
Elution cycles (4,15)	-2.28	1.67	-1.36	0.1877		
Elution Flow rate (µL/sec)(4,16)	-0.04	1.67	-0.02	0.9816		
Final Elution Volume (μL)(80,120)	0.19	1.67	0.11	0.9115		
BsAb-1 Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> t		
Intercept	37.54	1.27	29.57	<.0001*		
Capture cycles (4,15)	8.90	1.27	7.01	<.0001*		
Capture Flow rate (µL/sec)(4,16)	-4.62	1.27	-3.64	0.0014*		
Wash1 cycles (1,3)	-0.54	1.27	-0.42	0.6750		
Wash1 Flow rate (µL/sec)(4,16)	-0.76	1.27	-0.60	0.5574		
Wash2 cycles (1,3)	1.79	1.27	1.41	0.1720		
Wash2 Flow rate (µL/sec)(4,16)	0.36	1.27	0.29	0.7773		
Elution cycles (4,15)	-0.09	1.27	-0.07	0.9465		
Elution Flow rate (µL/sec)(4,16)	1.31	1.27	1.03	0.3124		
Final Flution Volume (ul.) (80,120)	4.68	1.27	3.69	0.0013*		

Microscale Chromatographic Purification of mAbs and BsAbs DoE-assisted method development: Central Composite Design

Microscale Chromatographic Purification Method Assessment

Key Considerations:

DoE-assisted method development followed by appropriate statistical analysis enabled:

- Experimental **planning based on the** time, costs and other analytical **resources available**.
- Scheduling and execution of experiments with adequate sample size and type of data to extrapolate maximum information from chemical data and efficiently address the challenges and goals of the intended research.
- Save time and costs for the experiments execution required by the standard OFAT (one-factor-at-a-time) approach.
- **Deconvolutes the complexity of analytical method development** by interrogating several factors at a time and studying the effect of both individual method parameters and their interactions on the dependent variable(s).

Future Work: Export files from Database and Analyse in JMP

- Expand data analytics capabilities and data automation
 - Data Visualisation
 - Statistical Analysis
 - Multivariate Methods
 - Modeling

Automated data curation and modeling

Thank you

Giulia Lambiase

LinkedIn linkedin.com/in/giulia-lambiase-004683134

