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Therapeutic protein analysis

Introduction to Design-of-Experiment (DoE)

Application of DoE to analytical method development

Chemometrics tools for data analysis

Case studies and Key considerations
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Analytical characterisation of therapeutic proteins
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linker

Monoclonal Antibody (mAb)

The inherent structural complexity of proteins 
constitutes an analytical challenge. Analytical 

methods are necessary to support product 
development, manufacturing and commercialisation.



Why DoE?
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• One Factor At a Time (OFAT) approach:

• Variation of one parameter at a time maintaining the other constant:

• Large experimental runs;

• No information on factors interactions;

• Lack of information leads to additional experiments during method validation;

• Lengthy experimentation may retard the overall process pertaining to drug development.

• DoE: 

• Variation of multiple parameters at a time:

• Reduction of experimental runs;

• Comprehensive investigation of the factors interactions leading to better understanding;

• Development of mathematical models that permit assessment of relevance and statistical 
significance facilitating method validation;

• Faster, Cheaper and Smarter experiments → Stronger 
and Better analytical methods



A Split-DoE Approach for Cation Exchange 

Chromatography Method Development 
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A Split-DoE Approach for Cation Exchange 

Chromatography Method Development 
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Factors
Columns: Agilent, Sepax, Phenomenex, Waters
pH (5.5, 6.0, 6.5)

Response
Experimental Peak Capacity (ePC)

Constant
Cbuffer: 20 mM sodium phosphate buffer
Csalt(t0): 40 mM sodium chloride
Flow rate: 0.17 mL/min
gt: 15 min
gshape: linear, 40-500mM sodium chloride
Temperature: 25 °C
Injection Volume: 5 L
Sample concentration: 1 mg/mL
UV: 210 nm, 280 nm

Main Effects Screening Design



A Split-DoE Approach for Cation Exchange 

Chromatography Method Development 
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A Split-DoE Approach for Cation Exchange 

Chromatography Method Development 
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HT CEX Method
Column: Phenomenex: bioZen WCX 2.1 x 50 mm, 6 um, np
Mobile phase: A) 10 mM Na3PO4, 80 mM sodium chloride;

B) 10 mM Na3PO4, 80 mM -1 M sodum chloridel
Gradient: 8-40%B in 0-10 min linear ramp

gt: 10 min
F: 0.2 mL/min
Temperature: 25 °C
Injection Volume: 5 L
Sample concentration: 1 mg/mL
UV: 210 nm, 280 nm

A B

Flow rate



A Split-DoE Approach for Cation Exchange 

Chromatography Method Development 
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27 experimental runs

Platform workflow to 
analytical method 
development

Data generated by Davide Di Girolamo and Ryte Poskute



Microscale Chromatographic Purification of mAbs and BsAbs

DoE-assisted method development
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MESD Factors
Capture cycles ( 4 – 15)
Capture Flow rate (4 – 16 µL/sec)
Wash 1 cycles (1 – 3)
Wash 1 Flow rate (4 – 16 µL/sec)
Wash 2 cycles (1 – 3)
Wash 2 Flow rate (4 – 16 µL/sec)
Elution cycles (4 – 15)
Elution Flow rate (4 – 16 µL/sec)
Final Elution Volume (80 – 120 µL)

MESD Response
%Recovery
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Microscale Chromatographic Purification of mAbs and BsAbs

DoE-assisted method development: Main Effect Screening Design
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A B
A

B
A B

mAb-1 Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

Intercept 16.89 1.67 10.09 <.0001*
Capture cycles (4,15) 5.56 1.67 3.32 0.0031*
Capture Flow rate (L/sec)(4,16) -3.63 1.67 -2.17 0.0410*
Wash1 cycles (1,3) 2.37 1.67 1.42 0.1701
Wash1 Flow rate (L/sec)(4,16) -2.24 1.67 -1.34 0.1949
Wash2 cycles (1,3) -0.31 1.67 -0.18 0.8556
Wash2 (L/sec)(4,16) -2.84 1.67 -1.70 0.1037
Elution cycles (4,15) -2.28 1.67 -1.36 0.1877
Elution Flow rate (L/sec)(4,16) -0.04 1.67 -0.02 0.9816
Final Elution Volume (L)(80,120) 0.19 1.67 0.11 0.9115

BsAb-1 Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

Intercept 37.54 1.27 29.57 <.0001*
Capture cycles (4,15) 8.90 1.27 7.01 <.0001*
Capture Flow rate (L/sec)(4,16) -4.62 1.27 -3.64 0.0014*
Wash1 cycles (1,3) -0.54 1.27 -0.42 0.6750
Wash1 Flow rate (L/sec)(4,16) -0.76 1.27 -0.60 0.5574
Wash2 cycles (1,3) 1.79 1.27 1.41 0.1720
Wash2 Flow rate (L/sec)(4,16) 0.36 1.27 0.29 0.7773
Elution cycles (4,15) -0.09 1.27 -0.07 0.9465
Elution Flow rate (L/sec)(4,16) 1.31 1.27 1.03 0.3124
Final Elution Volume (L)(80,120) 4.68 1.27 3.69 0.0013*



Microscale Chromatographic Purification of mAbs and BsAbs

DoE-assisted method development: Central Composite Design
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CCD Factors
Capture cycles ( 8 – 20)

Capture F (2 – 4 µL/sec)
Final Elution Volume (80 – 160 µL)

CCD Response

%Recovery

Constant parameters
Wash1 cycles (1) F (4 µL/sec)

Wash1 F (4 µL/sec)

Wash2 cycles (1), F (4 µL/sec)

Wash2 F (4 µL/sec)

Wash2 cycles (1)
Wash2 F (4 µL/sec)
Elution cycles (4)
Elution F 4 µL/sec

A B

A B

A

B

Flow rate

Flow rate



Microscale Chromatographic Purification

Method Assessment
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Main Effect Screening Design

12 Treatments

Central Composite Design

12 Treatments

DoE approach Recovery evaluation

24 Treatments
n=2

(2-days in the lab!)

Product Quality Assessment

< 3% Difference
Consistent (n=3)



Key Considerations:
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DoE-assisted method development followed by appropriate statistical analysis 
enabled:

• Experimental planning based on the time, costs and other analytical resources available.

• Scheduling and execution of experiments with adequate sample size and type of data to 
extrapolate maximum information from chemical data and efficiently address the 
challenges and goals of the intended research.

• Save time and costs for the experiments execution required by the standard OFAT (one-
factor-at-a-time) approach.

• Deconvolutes the complexity of analytical method development by interrogating several 
factors at a time and studying the effect of both individual method parameters and their 
interactions on the dependent variable(s).



Future Work:

Export files from 

Database and 

Analyse in JMP

4 • Expand data analytics capabilities 
and data automation

• Data Visualisation

• Statistical Analysis

• Multivariate Methods

• Modeling



Automated data curation and modeling
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DATABASE
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