

15

Expression Handling Functions: Part I
Unraveling the Expr(), NameExpr(), Eval(), ... Conundrum

Joseph Morgan, JMP Division of SAS Institute

Many beginning and intermediate JMP Scripting Language
(JSL) programmers are unaware of the power of abstraction
available from JSL expressions. Such meta-programming
constructs are not always available in widely used
programming languages such as C++ but are commonly
found in functional programming languages such as Lisp.
As it turns out, such constructs are particularly useful when
the application being developed is complex. They facilitate
process abstraction. Robert Sebesta (1999) describes
abstraction:

“The ability to define and then use complicated
structures or operations in ways that allow many of
the details to be ignored. The degree of abstraction
allowed and the naturalness of its expression is
important.”

This article attempts to unravel the mystery surrounding
JSL expression handling functions and show how such
functions can be used to solve nontrivial JSL programming
challenges.

JSL Expressions
What exactly is a JSL expression? Chapter 3 of the JMP
Scripting Guide (JSG) defines JSL expressions thus:

“A JSL expression is any combination of variables,
constants, and functions linked by operators that can
be evaluated.”

The key phrase here is “... that can be evaluated.” This
means that each of the following is a JSL expression.
100.1 //numeric literal
"string literal" //string literal
x //variable (or name)
x & (y | z) //logical expression
z*2 + z^2 -10 + pi() //arithmetic expression

However, more complex examples like the following are
also JSL expressions.
x = [];
for(i=1, i<=5, i++,
 x ||= random uniform(); show(x)
)

Although the term script is often used to refer to an example
like this, it is really just an expression. Remember that the
semicolon “;” is the glue operator that returns the value of
its right-most argument. A script is nothing more than a
single glue() function call with expressions as its
arguments. To see this, notice that the previous example is
equivalent to the following glue() function call.

glue(assign(x, []),
 for(assign(i, 1),
 less or equal(i, 5),
 post increment(i),
 glue(concat to(x,
 random uniform()
),
 show(x)
)
)
)

Hence, a JSL expression may be as simple as a literal or
variable, but could be as complex as a script.

What is an Expression Handling Function?
A useful way to think of expression handling
functions is as the set of JSL functions that
enables you to regard expressions as data.

Functions such as Expr(), NameExpr(), Eval(),
Function(), and Recurse() allow you to assign
expressions to variables for later retrieval and possible
evaluation. There are also functions that allow
expressions to be assembled, disassembled, and probed.
Insert() and Remove() are two of several functions
that may be used to assemble and disassemble
expressions whereas Arg() and Head() are intended for
probing. JMP offers a full complement of these
functions thus ensuring that JSL programmers can
easily realize the abstraction by Sebesta (1999).

These functions (see Table 1) fall into two categories:
those that evaluate their arguments when invoked and
those that do not. The best way to understand this
difference is to experiment with these functions. To
follow along, launch JMP and run the code fragments
presented in the following sections.

Table 1 JSL Expression-Handling Functions
Evaluate Arguments Do Not Evaluate Arguments

Parse() Expr()
Eval() NameExpr()
EvalList() EvalExpr()
Function() Arg()
Recurse() NArg()
Substitute()/SubstituteInto() Head()
Remove()/RemoveFrom() HeadName()
Insert()/InsertInto()

16

Expression Handling by Example
The following questions were real problems presented by JSL
programmers who had a task they were trying to complete. These
challenges are not intended to represent the range of questions a typical
JSL programmer is likely to face, but they comprise a series of typical
and commonly encountered questions.

1. The Substitute() vs. SubstituteInto() Question
Suppose you want to write a script that invokes the distribution
platform but the column to be analyzed is stored in a variable. In cases
like this, the Substitute() or SubstituteInto() function may be
used but it is sometimes not clear which one should be used.

For example, the following script uses Substitute() to replace colx,
with weight, but fails.

//script 1
stmt = Expr(distribution(column(colx)));
x = "weight";
Result = Substitute(stmt, Expr(colx), x);
show(stmt); show(Result);

If you execute this script, the log shows:

Not Found in access or evaluation of 'distribution' ,
Bad Argument({colx}), distribution(Column(colx))

Because Substitute() evaluates its arguments, it attempts to evaluate
stmt, but fails because colx does not exist. One solution is to
properly quote the first argument of Substitute(). That is, use
NameExpr() to retrieve the value of stmt.

//script 1 - revised
stmt = Expr(distribution(column(colx)));
x = "weight";
Result = Substitute(NameExpr(stmt),Expr(colx),x);
show(stmt); show(Result);

Now, execute this revised script to see the value of stmt and Result
displayed in the log.
stmt:distribution(Column(colx))
Result:distribution(Column("weight"))

Alternatively, SubstituteInto() may be used. The difference is that,
unlike Substitute(), SubstituteInto() does not evaluate its first
argument but simply updates it in place.

//script 2
stmt = Expr(distribution(column(colx)));
x = "weight";
SubstituteInto(stmt,Expr(colx), x);
show(stmt);

When you execute this script, the result in the log is

stmt:distribution(Column("weight"))

Summary Points
Point 1:
A common JSL mistake is to assume that
executing Expr(x) is equivalent to executing
NameExpr(x). Indeed, in the following
example, these two statements return the
same thing.

 Expr(4 + 35)
 NameExpr(4 + 35);

If you execute them one at a time, the log
shows,
 Expr(4 + 35);
 4 + 35
 NameExpr(4 + 35);
 4 + 35

The result is the same for both statements.
Expr(x) returns its argument unevaluated
and NameExpr(x) returns the value of its
argument unevaluated. The argument to
NameExpr(x) should be a variable, but when
it is an expression it simply returns its
argument.

Consider the next statement.

 x = Expr(2 + 50);

When you execute this statement the
expression 2 + 50 will be stored in x.

Now consider the following statements.

 Expr(x);

 NameExpr(x);

Execute each statement and look at the log.

 Expr(x);

 X
 NameExpr(x);

 2 + 50

Since Expr() returns its argument
unevaluated, the name x is returned, whereas
NameExpr(x) returns the value of its
argument unevaluated — 2 + 50.

Point: Executing Expr(x) is not equivalent
to executing NameExpr(x).

17

2. Obtaining Distinct Items From a List
Suppose you have a sorted list and want to retrieve only distinct items.
There is no JSL function to accomplish this, but it is easy to script a
solution.

Consider the following two lists.

Things = {"apple", "apple", "apple", "cat", "cat", "cat",

"golden", "grape", "mango", "mango", "silver",

"silver"};

Numbers = {1,200,200,200,400,400};

One approach is to iterate over items in each list and pick out the
distinct items as the iteration progresses. However, here is an alternative
and compact solution that illustrates the EvalList() function.

indx = {};

indx[1 :: NItems(Things)] =

 Expr(0 == i++ | Things [i - 1] != Things [i]);

 i = 0;

distinctlst = Things [Loc(EvalList(indx), 1)];

Note that the second statement creates a list of logical expressions and
that this list contains the same number of items as the sorted list. Each
expression is intended to compare the corresponding entry in the sorted
list to the item at its left. When evaluated (by EvalList() in the fourth
statement), each expression in the list evaluates to either true or false.
The Loc() function in the fourth statement converts this list of 0s and
1s into a vector of indices that retrieves the distinct items.

The following function is a more robust solution.

distinct list = Function({lst},

 Local({indx = {}, i = 0},

 If(Is List(lst),

 If(N Items(lst) < 2,

 lst,

 indx[1 :: NItems(lst)] =

 Expr(0 == i++ | lst[i - 1] != lst[i]);

 lst[Loc(EvalList(indx), 1)];

)

)

)

);

Calling the function with the list as its argument gives the following
unique items.

Distinct List(Things);

{"apple", "cat", "golden", "grape", "mango", "silver"}
Distinct List(Numbers);
{1, 200, 400}

Summary Points
Point 2:
When using the Eval() function, a
common mistake is to assume that
executing Eval(x) is equivalent to
executing x. This mistake can be easily
made if you examine examples like the one
below, where the second and third
statements produce the same results.

 x = Expr(4 + 25);
 x;

 Eval(x);

The first statement stores the expression
4 + 25 in x. If you execute the second and
third statements in turn, you see the
following in the log.

 x;
 29

 Eval(x);

 29

However, what if the first statement was a
nested Expr() function as in the example
below.

 x = Expr(Expr(4 + 25));
 x;

 Eval(x);

Note that, for this example, the first
statement stores the expression
Expr(4 + 25) in x. If you execute the
second and third statements in turn, you
see the following in the log.

 x;

 4 + 25
 Eval (x);

 29

The results are now different.

Point: Executing Eval(x) is not
equivalent to executing x.

18

3. The Literal Argument Challenge
Suppose you are interested in creating a dialog that
contains several outline nodes, each of which contains
hyperlinks to different data tables (see Figure 1). The
Sample Data Index found in the JMP Help menu is an
example of such a dialog.

Figure 1 Outline Nodes in Sample Data Directory

The following script illustrates how one of these outline
nodes could be built, using the JMP sample data index
as the example.

//Brute Force Method

New Window("Sample Directory",
Outline Box("Categorical Models",
Lineup Box(N Col(2), Spacing(0),
Button Box("Detergent",underline style(1),
Open("$SAMPLE_DATA/Detergent.jmp")),
Text Box("Nominal Logistic Regression"),
Button Box("Ingots2", underline style(1),
Open("$SAMPLE_DATA/Ingots2.jmp")),
Text Box("Logistic Regression"),
)));

This approach rapidly becomes unwieldy when adding
statements to construct more and more outline nodes,
each with multiple buttons. Instead, imagine a different
approach where the script iterates over a list of outline
node titles, data table names, and descriptions. As it
iterates over the list, it constructs the corresponding
dialog.

The following list of lists is for a two-node dialog.
// create a list of lists

sample = {
{"Anova",
 {"Blood Pressure", "Multiple Repeated

Measures"},
 {"Typing Data", "1-way Anova"}
},
{"Categorical Models",
 {"Detergent", "Logistic Regression"},
 {"Ingots2", "Nonlinear Probit Analysis"}}
};

Notice that each inner list consists of an initial entry,
which is the outline node title. It is followed by several lists
of pairs, where the first item is the data table name, and
the second item is a table description.

The following function builds the sample file dialog. The
addnode() function takes two arguments: the first is a
reference to a dialog box, and the second is a list. The
addnode()function is a nested loop that iterates through
the list and creates an outline node from the first entry in
each inner list. For each inner list pair, it creates a button
box with an associated open() script, along with the text
box that provides the button description. .

//Function to build sample file dialog

addnode = Function({ref, lst},
 For(x = 1, x <= N Items(lst), x++,
 ref << append(Outline Box(lst[x][1],
 lbx = Lineup Box(N Col(2),
 spacing(0))));
 For(y = 2, y <= N Items(lst[x]), y++,
 table = "$SAMPLE_DATA/" ||

 lst[x][y][1] || ".jmp";
 cmd = Expr(lbx << append(bbx =

 Button Box(lst[x][y][1],
 Open(Expr(table))))
);
 Eval(EvalExpr(cmd));
 bbx << underlinestyle;

 lbx << append(Text Box(lst[x][y][2])
);

);
)
);

To start, you need to first create a skeleton dialog to
contain the outline nodes and then addnode() is invoked.

//Create a panel box to contain nodes

New Window("Sample Files",

 pbx = Panel Box("Files categorized by
analysis"));

//Invoke Sample file function

addnode(pbx, sample);

Note that the append(Button Box(...)) message has
been cast as an expression, and that this expression
contains a sub-expression, Expr(table). When Eval
Expr(cmd) is evaluated, Expr(table) is replaced with
its value and, as a result, the value of table at the time of
button creation is preserved.

19

The ‘literal argument challenge’ in this script occurs in the way the
append(Button Box(...)) message is written. A common mistake is
to write the statement thus:

lbx << append(bbx = Button Box(lst[x][y][1],

 Open(table)));

instead of the correct expression in the script,

cmd = Expr(lbx << append(bbx = Button Box(

lst[x][y][1],

 Open(Expr(table)))));

Although the first statement appears to work, each button actually
opens the same data table. In fact, that button always open
Ingots2.jmp, which happens to be the last data table in the example
list. The problem is the table variable providing the name for each
button. Although table contains the correct data table name when
each button is created, its value after the dialog is created, and
therefore when any button is clicked, will be the last value that was
assigned to it.

Here is another correct option.

Eval(Substitute(

 Expr(lbx << append(bbx = Button Box(lst[x][y][1],

 Open(xxx)))),

 Expr(xxx), NameExpr(table)));

For this solution, the append(Button Box(...)) message has also
been cast as an expression, but it is used here as the first argument of
Substitute(). Recall that Substitute() evaluates its arguments
and NameExpr() returns the value of its argument unevaluated. So,
each time this statement is executed, Substitute() returns the value
of its first argument but with the value of table in place of the
pattern xxx. Therefore, the effect is the same as the correct solution
shown previously.

Concluding Comments
The primary purpose of these examples is to illustrate the use of several
expression-handling functions. A secondary purpose is to point out
common errors and misunderstandings that JSL programmers
sometimes experience when attempting to use these functions.
Hopefully, we have partly achieved that objective.

Reference
SAS Institute, Inc. (2008), JMP Scripting Guide, Cary, NC: SAS Institute, Inc.

Sebesta, Robert M. (1999), Concepts of Programming Languages, Addison Wesley,
Reading, MA.

Summary Points
Point 3:
Remember that EvalExpr() does not
evaluate its argument. It clones its
argument and replaces any Expr() sub-
expressions with their evaluated values.
Consider this example.
y = Expr (

Distribution(
 Column(Expr("X" || Char(i)))

)
);
i=3;
x = NameExpr(y);
EvalExpr(x);

As expected, statement 4 returns

Distribution(Column("X3")).

So, why not combine statement 3 and
statement 4? That is, replace the two
separate statements with:

 EvalExpr(NameExpr(y));

When this combined expression executes,
NameExpr(y) is returned. Note that
EvalExpr() does not evaluate
NameExpr(y); it simply clones it and,
since NameExpr(y) does not itself contain
Expr() sub-expressions, NameExpr(y) is
returned as is.

Point: EvalExpr() does not evaluate its
argument.

Point 4:
If you choose to nest Eval() functions,
think carefully about how the combined
statement will be evaluated. Since Eval()
evaluates its argument and then evaluates
the result, nesting n Eval() statements is
not equivalent to n instances of Eval().
Consider the following example.
x = Expr(Expr(Expr(Expr(1 + 2

))));
 Eval(Eval(x));
 y = Eval(x);
 Eval(y);

Try these statements yourself, executing
them one by one, and note the results in
the log.

Point: n nested Eval()statements is not
equivalent to n Eval() statements.

