

CREATING AND ANALYZING DEFINITIVE SCREENING DESIGNS

Mastering JMP Webcast February 11, 2021

Tom Donnelly, PhD, CAP Principal Systems Engineer JMP Defense & Aerospace Team

AGENDA

- Why do we use Design of Experiments (DOE)?
- Review of Classic DOE
- Custom DOE is all about

Making Designs Fit the Problem – NOT Making Problems Fit the Designs!

- However, use Definitive Screening Designs (DSDs) when possible!
- Quick example of creating and fitting a DSD.
- What are DSDs?
- How do we fit models for DSDs?
- When results are ambiguous, it is easy to augment DSD to RSM.
- Examples:
 - Extraction 3 Data.jmp: continuous with a blocking factor, & 4 extra runs
 - CO2_Process.jmp: all continuous factors, no extra runs
 - Peanut Data.jmp: continuous & categorical factors, & 4 extra runs

WHY USE DOE?

QUICKER ANSWERS, LOWER COSTS, SOLVE BIGGER PROBLEMS

- More rapidly answer "what if?" questions
- Do sensitivity and trade-space analysis
- Optimize across multiple responses
- By running efficient subsets of all possible combinations, one can – for the same resources and constraints – solve bigger problems
- By running sequences of designs
 one can be as cost effective as possible and
 run no more trials than needed to get a useful answer

USE JMP TRADE-OFF AND OPTIMIZATION

SHARE RESULTS ON JMP PUBLIC OR JMP LIVE

View optimizations on your phone. Scan the QR code to launch browser, then use finger to interact with the Prediction Profiler and to "Apply" saved settings.

Rememb	ered Settings							
	Setting	Sensitizer 1	Sensitizer 2	Dye	Reaction Time	Speed	Contrast	Cost
Apply	Equal Importance Opt	80.753574	91.269729	250.57625	120	5.3542877	0.7466933	0.2504014
Apply	Mid Point Settings	70	70	250	150	5.5054353	0.6895831	0.3623274
Apply	Cost 6X Speed & Contrast	84.016038	93.725925	283.02514	120	5.2902084	0.72549	0.1991539
Apply	Opt Spd3X-Cntr1X-Cost6X	81.958309	90.706277	286.82246	120	5.3269582	0.7177857	0.2211116

CLASSIC RESPONSE-SURFACE DOE IN A NUTSHELL

POLYNOMIAL MODELS USED TO CALCULATE SURFACES

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$$

Run this block 1st to:

- (i) estimate the main effects*
- (ii) use center point to check for curvature.

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$$

$$+ a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3$$
Run this block 2nd to:

- (i) repeat main effects estimate,
- (ii) check if process has shifted
- (iii) add interaction effects to model if needed.

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$$

$$+ a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3$$

$$+ a_{11} x_1^2 + a_{22} x_2^2 + a_{33} x_3^2$$

Run this block 3rd to:

- (i) repeat main effects estimate,
- (ii) check if process has shifted
- (iii) add curvature effects to model if needed.

NUMBER OF UNIQUE TRIALS FOR 3 RESPONSE-SURFACE DESIGNS AND NUMBER OF QUADRATIC MODEL TERMS VS. NUMBER OF CONTINUOUS FACTORS

- Variable Trials in Central Composite Design
- Unique Trials in Box-Behnken Design
- Unique Trials in I-optimal Design with 6 df for Model Error
- Terms in Quadratic Model = (k+1)(k+2)/2

If generally running 3, 4 or 5-factor fractional-factorial designs...

- 1. How many interactions are you not investigating?
- 2. How many more trials needed to fit curvature?

NUMBER OF UNIQUE TRIALS FOR 3 RESPONSE-SURFACE DESIGNS AND **NUMBER OF QUADRATIC MODEL TERMS** VS. **NUMBER OF CONTINUOUS FACTORS**

- Unique Trials in Central Composite Design
- Unique Trials in Box-Behnken Design
- Unique Trials in Custom Design with 6 df for Model Error
- Terms in Quadratic Model = (k+1)(k+2)/2

36 trial I-optimal response-surface design started as 10-factor DSD and was then augmented with 12 more trials in 6 most important factors

If generally running 3, 4 or 5-factor fractional-factorial designs...

- How many interactions are you not investigating?
- How many more trials needed to fit curvature?
- Consider two stages: Definitive Screening + Augmentation

CLASSIC DEFINITION OF DOE

Purposeful control of the inputs (factors) in such a way as to deduce their relationships (if any) with the output (responses).

ALTERNATIVE DEFINITION OF DOE

A DOE is the specific collection of trials run to support a proposed model.

- If proposed model is simple, e.g. just main effects or 1st order effects (x₁, x₂, x₃, etc.), the design is called a screening DOE
 - » Goals include rank factor importance or find a "winner" quickly
 - » Used with many (> 6?) factors at start of process characterization
- If the proposed model is **more complex**, e.g. the model is 2^{nd} **order** so that it includes two-way interaction terms (x_1x_2 , x_1x_3 , x_2x_3 , etc.) and in the case of continuous factors, squared terms (x_1^2 , x_2^2 , x_3^2 , etc.), the design is called a **response-surface** DOE
 - » Goal is generally to develop a **predictive model** of the process
 - » Used with a few (< 6?) factors after a screening DOE</p>

ALTERNATIVE DEFINITION OF DOE

A DOE is the specific collection of trials run to support a proposed model.

- If proposed model is simple, e.g. just main effects or 1st order effects (x₁, x₂, x₃, etc.), the design is called a screening DOE
 - » Goals include rank factor importance or find a "winner" quickly
 - » Used with many (> 6?) factors at start of process characterization
- If the proposed model is **more complex**, e.g. the model is 2^{nd} **order** so that it includes two-way interaction terms (x_1x_2 , x_1x_3 , x_2x_3 , etc.) and in the case of continuous factors, squared terms (x_1^2 , x_2^2 , x_3^2 , etc.), the design is called a **response-surface** DOE
 - » Goal is generally to develop a **predictive model** of the process
 - » Used with a few (< 6?) factors after a screening DOE

Definitive Screening Designs allow the fitting of second order terms – ALL squared and potentially SOME interaction terms – for no more work than classic screening designs.

REAL-WORLD DESIGN ISSUES

How many experimenters have any of these issues? Most of these are NOT well treated by classic DOE

- Work with these different kinds of control variables/factors:
 - » Continuous/quantitative? (Finely adjustable like temperature, speed, force)
 - » Categorical/qualitative? (Comes in types, like material = rubber, polycarbonate, steel with mixed # of levels; 3 chemical agents, 4 decontaminants, 8 coupon materials...)
 - » Mixture/formulation? (Blend different amounts of ingredients and the process performance is dependent on the proportions more than on the amounts)
 - » Blocking? (e.g. "lots" of the same raw materials, multiple "same" machines, samples get processed in "groups" like "eight in a tray," run tests over multiple days i.e. variables for which there shouldn't be a causal effect
- Work with combinations of these four kinds of variables?
- Certain combinations cannot be run? (too costly, unsafe, breaks the process)
- Certain factors are hard-to-change (temperature takes a day to stabilize)
- Would like to add onto existing trials? (really expensive/time consuming to run)

REAL-WORLD DESIGN ISSUES

How many experimenters have any of these issues? Most of these are NOT well treated by classic DOE

- Work with these different kinds of control variables/factors:
 - » Continuous/quantitative? (Finely adjustable like temperature, speed, force)
 - » Categorical/qualitative? (Comes in types, like material = rubber, polycarbonate, steel with mixed # of levels; 3 chemical agents, 4 decontaminants, 8 coupon materials...)
 - » Mixture/formulation? (Blend different amounts of ingredients and the process performance is dependent on the proportions more than on the amounts)
 - » Blocking? (e.g. "lots" of the same raw materials, multiple "same" machines, samples get processed in "groups" like "eight in a tray," run tests over multiple days i.e. variables for which there shouldn't be a causal effect
- Work with combinations of these four kinds of variables?
- Certain combinations cannot be run? (too costly, unsafe, breaks the process)
- Certain factors are hard-to-change (temperature takes a day to stabilize)
- Would like to add onto existing trials? (really expensive/time consuming to run)

Many of these issues prevent the use of Definitive Screening Designs. BUT, if your factors are **continuous**, **2-level categorical**, and/or **blocking** then consider doing a DSD first.

Extraction 3 Data.jmp

- Uses 6 continuous factors plus blocking at 2 levels
- Add 4 extra runs DSD
- Analyze with Fit Definitive Screening (p. 276 of DOE Guide)
- Factors and Ranges shown below

Methanol	Ethanol	Propanol	Butanol	рН	Time
0	0	0	0	6	1
10	10	10	10	9	2

SUMMARY OF MODERN SCREENING DOE

Definitive <u>Screening</u> Designs

- Efficiently estimate main and quadratic effects for no more and often fewer trials than traditional designs
- If only a few factors are important the design may collapse into a "one-shot" design that supports a response-surface model (RSM).
- If many factors are important (so RSM can't be fit) the design can be augmented to support an RSM
- Case study for a 10-variable process shows that it can be optimized in just 23 unique trials
 - » Visually "model" factors
 - » Fit Definitive Screening
 - » Fit All Possible Models
 - » Augment design with subset of original factors

WHAT IS THE MINIMUM # FACTORS "COLLAPSE" TO RSM

- For 6 through at least 30 factors, it is possible to estimate the parameters of any full quadratic model involving 3 or fewer factors with high precision.
- For 18 factors or more, they can fit full quadratic models in any 4 factors.
- For 24 factors or more, they can fit full quadratic models in any 5 factors.
- Due to factor sparsity, one can often fit response-surface models with more factors than these minimums.

REFERENCES

Original Research on Definitive Screening Designs

Jones, B., and C. J. Nachtsheim (2011). "A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects," *Journal of Quality Technology*, 43 pp. 1-15

Xiao, L, Lin, D. K.J., and B. Fengshan (2012). "Constructing Definitive Screening Designs Using Conference Matrices," *Journal of Quality Technology*, 44, pp. 1-7.

Jones, B., and C. J. Nachtsheim (2013). "Definitive Screening Designs with Added Two-Level Categorical Factors," *Journal of Quality Technology*, 45 pp. 121-129

Jones, B., and C. J. Nachtsheim (2016a). "Blocking Schemes for Definitive Screening Designs," *Technometrics*, 58, pp. 74-83

Jones, B., and C. J. Nachtsheim (2016b). "Effective Model Selection for Definitive Screening Designs," *Technometrics*, (online now)

https://www.tandfonline.com/doi/full/10.1080/00401706.2016.1234979.

IN ORIGINAL 2011 JQT PAPER - DESIGN SIZE IS 2M + 1

NITIVE SCREENING DESIGNS FROM CONFERENCE MATRICES XIAO, BAI AND LIN (JQT, 2012)

$$D = \left(\begin{array}{c} C \\ -C \\ 0 \end{array}\right) =$$

http://www.newton.ac.uk/programmes/DAE/seminars/090209001.pdf

CONFERENCE MATRIX METHOD IN 2012 JQT PAPER DESIGN SIZE IS 2M + 3 FOR ODD M DESIGN SIZE IS 2M + 1 FOR EVEN M

7-FACTOR - DSD17

8-FACTOR - DSD17

	Α	В	c	D	E	F	G		Α	В	c	D	E	F	G	н
1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
2	0	-1	-1	-1	-1	-1	-1	2	0	-1	-1	-1	-1	-1	-1	-1
3	1	0	-1	-1	1	-1	1	3	1	0	-1	-1	1	-1	1	1
4	-1	0	1	1	-1	1	-1	4	-1	0	1	1	-1	1	-1	-1
5	1	1	0	-1	-1	1	-1	5	1	1	0	-1	-1	1	-1	1
6	-1	-1	0	1	1	-1	1	6	-1	-1	0	1	1	-1	1	-1
7	1	1	1	0	-1	-1	1	7	1	1	1	0	-1	-1	1	-1
8	-1	-1	-1	0	1	1	-1	8	-1	-1	-1	0	1	1	-1	1
9	1	-1	1	1	0	-1	-1	9	1	-1	1	1	0	-1	-1	1
10	-1	1	-1	-1	0	1	1	10	-1	1	-1	-1	0	1	1	-1
11	1	1	-1	1	1	0	-1	11	1	1	-1	1	1	0	-1	-1
12	-1	-1	1	-1	-1	0	1	12	-1	-1	1	-1	-1	0	1	1
13	1	-1	1	-1	1	1	0	13	1	-1	1	-1	1	1	0	-1
14	-1	1	-1	1	-1	-1	0	14	-1	1	-1	1	-1	-1	0	1
15	1	-1	-1	1	-1	1	1	15	1	-1	-1	1	-1	1	1	0
16	-1	1	1	-1	1	-1	-1	16	-1	1	1	-1	1	-1	-1	0
17	0	0	0	0	0	0	0	17	0	0	0	0	0	0	0	0

Both designs are orthogonal in linear and squared terms Factor H will become a hidden Fake Factor in DSD Analysis

DEFINITIVE SCREENING DESIGNS HAVE DESIRABLE PROPERTIES

- Main effects are not confounded with 2nd order effects
- Number of trials for even numbers of factors is (2m + 1)
 and for odd numbers of factors it is (2m + 3)
 which is equal to or smaller than a Plackett-Burman (Res III) or Fractional Factorial (Res IV) design plus center point
- There are mid-levels for each factor allowing estimation of curvature individually - not just globally as with a PB or FF designs plus center point
- If drop a factor, the design retains all its properties
- If a subset of factors are significant there is a good chance that interaction terms may also be fit

The screening design may even collapse into a response-surface design supporting a 2nd order model in a subset of factors with which one can optimize the process

6-FACTOR, 13-TRIAL, DEFINITIVE SCREENING DESIGN

4						
•	Α	В	С	D	E	F
1	0	1	-1	-1	-1	-1
2	0	-1	1	1	1	1
3	1	0	-1	1	1	-1
4	-1	0	1	-1	-1	1
5	-1	-1	0	1	-1	-1
6	1	1	0	-1	1	1
7	-1	1	1	0	1	-1
8	1	-1	-1	0	-1	1
9	1	-1	1	-1	0	-1
10	-1	1	-1	1	0	1
11	1	1	1	1	-1	0
12	-1	-1	-1	-1	1	0
13	0	0	0	0	0	0

6-FACTOR, 12-TRIAL, PLACKETT-BURMAN DESIGN

4 .						
•	Α	В	С	D	E	F
1	1	-1	1	-1	1	1
2	-1	-1	1	-1	-1	1
3	1	1	1	-1	-1	-1
4	-1	1	-1	-1	1	-1
5	-1	-1	-1	-1	1	-1
6	1	-1	1	1	1	-1
7	1	1	-1	-1	-1	1
8	1	1	-1	1	1	1
9	-1	-1	-1	1	-1	1
10	1	-1	-1	1	-1	-1
11	-1	1	1	1	-1	-1
12	-1	1	1	1	1	1

COLOR MAPS FOR 6-FACTOR, PLACKETT-BURMAN (LEFT) AND DEFINITIVE SCREENING DESIGN (RIGHT)

Including center point with Plackett-Burman, these two designs are both 13 trials Same size BUT Definitive Screening can test for curvature in each factor

6-FACTOR, 16-TRIAL, REGULAR FRACTIONAL FACTORIAL

	Pattern	Α	В	C	D	E	F
1		-1	-1	-1	-1	-1	-1
2	++	-1	-1	-1	1	1	1
3	+-+	-1	-1	1	-1	1	1
4	++	-1	-1	1	1	-1	-1
5	-++-	-1	1	-1	-1	1	-1
6	-+-+-+	-1	1	-1	1	-1	1
7	-+++	-1	1	1	-1	-1	1
8	-+++-	-1	1	1	1	1	-1
9	++	1	-1	-1	-1	-1	1
10	++-	1	-1	-1	1	1	-1
11	+-+-+-	1	-1	1	-1	1	-1
12	+-++-+	1	-1	1	1	-1	1
13	++++	1	1	-1	-1	1	1
14	++-+	1	1	-1	1	-1	-1
15	+++	1	1	1	-1	-1	-1
16	+++++	1	1	1	1	1	1

COLOR MAPS FOR 6-FACTOR, FRACTIONAL FACTORIAL (LEFT) AND DEFINITIVE SCREENING DESIGN (RIGHT)

Including center point with FF increases size to 17 trials - 13-trial Definitive Screening Design is **4 fewer tests AND can test for curvature in each factor** Or, add 4 extra rows to DSD to improve robustness of Fitting Models

DO WE GIVE UP NOTHING?

- Relative to same size classic 2-level screening designs
 - Confidence intervals increase typically ≤10%
 - Standard error increases typically ≤ 10%
 - Power is reduced for main effects typically ≤ 10% (comparing just ME)
 - Power for squared terms is "low"
 - Still better than power for single center point test for curvature
 - Power is same as larger Central Composite Design supporting full quadratic model
 - Power increases as fewer curvature terms are evaluated drop least important terms (Factor Sparsity is our friend!)

ANY OTHER WEAKNESSES?

- Factor range for screening may not include optimum
 - So, follow on design will be over different ranges really can't augment
 - This is more likely with early product development than with designs testing mature systems

CONFIDENCE INTERVAL, STANDARD ERROR & MAIN EFFECTS POWER FOR 6-FACTOR DESIGNS:

PLACKETT-BURMAN 12 + CP DEFINITIVE SCREENING DESIGN 13 FRACTIONAL-FACTORIAL 16 + CP DEFINITIVE SCREENING DESIGN 17

PB12+CP

Fatimentia	n recionar	Significance Level	0.05	
Estimatio	on Efficiency		Anticipated RMSE	1
	Fractional Increase	Relative Std Error	Antici	pated
Parameter	in CI Length	of Parameters	Parameter Coeffi	cients
Intercept	0	0.277	Intercept	1
X1	0.041	0.289	X1	1
X2	0.041	0.289	X2	1
X3	0.041	0.289	Х3	1
X4	0.041	0.289	X4	1
X5	0.041	0.289	X5	1
X6	0.041	0.289	X6	1

Power Analysis

Power Analysis

0.85 0.821 0.821 0.821 0.821 0.821 0.821

DSD13

			Significance	Level 0.05	
Estimation	Efficiency		Anticipated	RMSE 1	
F	ractional Increase	Relative Std Error		Anticipated	
Parameter	in CI Length	of Parameters	Parameter	Coefficients	Power
Intercept	0	0.277	Intercept	1	0.85
X1	0.14	0.316	X1	1	0.75
X2	0.14	0.316	X2	1	0.75
X3	$+ 10\%_{0.14}^{0.14}$	$-$ 00/ $^{0.316}$	X3	00/ 1	0.75
X4	+ 10% o _{0.14}	$+9\%_{0.316}^{0.316}$	X4	- 9% ₁	0.75
X5	0.14	0.316	X5	1	0.75
X6	0.14	0.316	X6	1	0.75

FF16+CP

				Level 0.03	
Estimatio	n Efficiency		Anticipated	RMSE 1	
	Fractional Increase	Relative Std Error		Anticipated	
Parameter	in CI Length	of Parameters	Parameter	Coefficients	Power
Intercept	0	0.243	Intercept	1	0.959
X1	0.031	0.25	X1	1	0.949
X2	0.031	0.25	X2	1	0.949
X3	0.031	0.25	X3	1	0.949
X4	0.031	0.25	X4	1	0.949
X5	0.031	0.25	X5	1	0.949
X6	0.031	0.25	X6	1	0.949

Power Analysis

Power Analysis

Significance Level 0.05

Significance Level 0.05

DSD17

Estimatio	n Efficiency	Anticipated	RMSE 1		
	Fractional Increase	Relative Std Error		Anticipated	
Parameter	in CI Length	of Parameters	Parameter	Coefficients	Power
Intercept	0	0.243	Intercept	1	0.959
X1	0.102	0.267	X1	1	0.92
X2	0.102	0.267	X2	1	0.92
X3	· 70 / ^{0.102}	+ 7% o.267	X3	- 3% ₁	0.92
X4	+ 7% 0.102	+ / 70 0.267	X4	- 3% ₁	0.92
X5	0.102	0.267	X5	1	0.92
X6	0.102	0.267	X6	1	0.92

QUADRATIC TERM POWER FOR 6-FACTOR DESIGNS – SCREENING & RSM

QUADRATIC TERM POWER FOR TEN 6-FACTOR DESIGNS – SCREENING & RSM

Power Analysis

Significance Level 0.05 **Anticipated RMSE**

Anticipated

Anticipateu							
Paramet	er Coefficie	nts	Power				
Intercept		1	0.073				
X1		1	0.196				
X2		1	0.196				
X3	CD42	1	0.196				
X4	SD13	1	0.196				
X5		1	0.196				
X6		1	0.196				
X1*X1		1	0.096				
X2*X2		-1	0.096				
X3*X3	0.10	1	0.096				
X4*X4		-1	0.096				
X5*X5		1	0.096				
X6*X6		-1	0.096				

Power Analysis

Significance Level 0.05 **Anticipated RMSE**

Parameter Coefficients Power Intercept 1 0.13 X1 0.796 0.796 X2 1 0.796 X3 1 0.796 X4 1 0.796 X5 1 0.796 X6 1 0.796 X1*X1 1 0.211 X2*X2 -1 0.211 X3*X3 0.21 1 0.211 X4*X4 1 0.211 0.211 X5*X5 1 0.211 0.211 X6*X6 1 0.211 0.211	Anticipated			
X1	Parameter Coefficie	nts	Power	
X2	Intercept	1	0.13	
X3 X4 DSD17 1 0.796 X5 1 0.796 X6 1 0.796 X1*X1 1 0.211 X2*X2 -1 0.211 X3*X3 0.21 1 0.211 X4*X4 1 0.211 X5*X5 1 0.211	X1	1	0.796	
X4 DSD17 1 0.796 X5 1 0.796 X6 1 0.796 X1*X1 1 0.211 X2*X2 -1 0.211 X3*X3 0.21 1 0.211 X4*X4 1 0.211 X5*X5 1 0.211	X2	1	0.796	
X5 1 0.796 X6 1 0.796 X1*X1 1 0.211 X2*X2 -1 0.211 X3*X3 0.21 1 0.211 X4*X4 1 0.211 X5*X5 1 0.211	X3 DCD47	1	0.796	
X6 1 0.796 X1*X1 1 0.211 X2*X2 -1 0.211 X3*X3 0.21 1 0.211 X4*X4 -1 0.211 X5*X5 1 0.211	X4 D5D1	1	0.796	
X1*X1	X5	1	0.796	
X2*X2 X3*X3 X4*X4 X5*X5	X6	1	0.796	
X3*X3 X4*X4 X5*X5 X3*X3 0.21 1 0.211 1 0.211 1 0.211	X1*X1	1	0.211	
X4*X4 -1 0.211 X5*X5 1 0.211	X2*X2	-1	0.211	
X4*X4 -1 0.211 X5*X5 1 0.211	X3*X3 0_21	1	0.211	
		-1	0.211	
X6*X6 -1 0.211	X5*X5	1	0.211	
	X6*X6	-1	0.211	

Power Analysis

Significance Level Anticipated RMSE

Anticipated			
Parameter	Coefficients	Power	
Intercept	1	0.159	
X1	1	0.959	
X2	1	0.959	
X3	DO4 1	0.959	
X4 D 5	D21	0.959	
X5	1	0.959	
X6	1	0.959	
X1*X1	1	0.261	
X2*X2	-1	0.261	
X3*X3	.26 ¹	0.261	
X4*X4	-1	0.261	
X5*X5	1	0.261	
X6*X6	-1	0.261	

Power Analysis

Significance Level 0.05 Anticipated RMSE

Anticipated

Parameter Coefficients Power			
Intercept	1	0.259	
X1	1	0.985	
X2	1	0.985	
2X	1	0.985	
X4 DSD13	1	0.985	
X5 D3D13	1	0.985	
X6	1	0.985	
X1*X1	1	0.488	
X2*X2	-1	0.488	
X3*X3 0.49	1	0.488	
X4*X4	-1	0.488	
X5*X5	1	0.488	
X6*X6	-1	0.488	

Power Analysis

Significance Level 0.05 Anticipated RMSE

Anticipated

Parameter Coefficie	ents	Power
Intercept	1	0.39
X1	1	0.994
X2AUGME	N	0.996
X3 X4 DSD17	_1	0.996
X4 D 5D1/	1,4	0.996
X5 I-OPT3	4	0.993
X6	1	0.993
X1*X1	1	0.583
X2*X2	-1	0.587
X3*X3 0.58	1	0.568
X4*X4	-1	0.623
X5*X5	1	0.574
X6*X6	-1	0.559

Power Analysis

Significance Level 0.05 **Anticipated RMSE**

Anticipated

Parameter Coef	fficients	Power
Intercept	1	0.13
X1	1	0.789
X2	1	0.789
X3PB12+	CD	0.789
X4	1	0.789
X5	1	0.789
X6	1	0.789
X1*X1	1	0.124

0.12

Power Analysis

Significance Level 0.05 Anticipated RMSE

Anticipated

Parameter Coefficien	ts	Power
Intercept	1	0.146
X1	1	0.944
X2	1	0.944
X3 FF16+CF	7	0.944
X4	1	0.944
X5	1	0.944
X6	1	0.944
X1*X1	1	0.14

0.14

Power Analysis

Significance Level 0.05 Anticipated RMSE

Anticipated Parameter Coefficients Power

Intercept	1	0.839
X1	1	1
X2	1	1
X3 CCD45	1	1
X4	1	1
X5	1	1
X6	1	1
X1*X1	1	0.321
X2*X2	1	0.321
x3*x3 0.32	1	0.321
X4*X4	1	0.321
X5*X5	1	0.321
X6*X6	1	0.321

Power Analysis

Significance Level 0.05 Anticipated RMSE

Anticipated

Parameter Coefficient	S	Power
Intercept	1	0.164
X1	1	0.997
X2	1	0.997
X3 BB49	1	0.997
	1	0.997
X5	1	0.997
X6	1	0.997
X1*X1	1	0.608
X2*X2 -	1	0.608
x3*x3 0.61	1	0.608
X4*X4 -	1	0.608
X5*X5	1	0.608
X6*X6 -	1	0.608

Power Analysis

Significance Level 0.05 Anticipated RMSE

Anticipated

Parameter Coefficie	nts	Power
Intercept	1	0.466
X1	1	0.995
X2	1	0.991
X3 I-OPT3	1 1	0.992
X4	1	0.995
X5	1	0.989
X6	1	0.991
X1*X1	1	0.597
X2*X2	-1	0.659
X3*X3 0.63	1	0.693
X4*X4	-1	0.631
X5*X5	1	0.594
X6*X6	-1	0.621

POWER FOR 6 MAIN EFFECTS & 6 QUADRATIC TERMS FOR ALL TERMS VS. ONE QUAD TERM AT A TIME

Power Analysis

Significance Level 0.05 Anticipated RMSE 1

Anticipated

Parameter Coefficie	nts	Power	
Intercept	1	0.073	
X1	1	0.196	
X2	1	0.196	
X3 DSD13	1	0.196	
X4 D5D13	1	0.196	
X5	1	0.196	
X6	1	0.196	
X1*X1	1	0.096	
X2*X2	-1	0.096	
X3*X3 0.10	1	0.096	
X4*X4	-1	0.096	
X5*X5	1	0.096	
X6*X6	-1	0.096	

Power Analysis

Significance Level 0.05 Anticipated RMSE 1

Anticipated

Parameter Coefficients Power			
Intercept	1	0.291	
X1	1	0.716	
X2	1	0.716	
X3 DSD13	1	0.716	
X4 D5D13	1	0.716	
X5	1	0.716	
X6	1	0.716	
X1*X1	1	0.236	

0.24

Power Analysis

Significance Level 0.05 Anticipated RMSE 1

Anticipated

-	parea	
Parameter C	oefficients	Power
Intercept	1	0.13
X1	1	0.789
X2	1	0.789
X3 X4 PB1 2	246	0.789
X4	ZTGF	0.789
X5	1	0.789
X6	1	0.789
X1*X1	1	0.124

0.12

Power Analysis

Significance Level 0.05 Anticipated RMSE 1

Anticipated

Parameter Coefficients	Power
Intercept 1	0.13
X1 1	0.796
X2 1	0.796
X3 1	0.796
X4 DSD17 1	0.796
X5 1	0.796
X6 1	0.796
X1*X1 1	0.211
X2*X2 -1	0.211
X3*X3 0.21 1	0.211
X4*X4 U-2 -1	0.211
X5*X5 1	0.211
X6*X6 -1	0.211

Power Analysis

Significance Level 0.05 Anticipated RMSE 1

Anticipated

ıts	Power
1	0.341
1	0.913
1	0.913
1	0.913
1	0.913
1	0.913
1	0.913
1	0.29
	1 1 1 1 1 1

0.29

Power Analysis

Significance Level 0.05 Anticipated RMSE 1

Anticipated

Parameter Coefficients	Power
Intercept 1	0.146
X1 1	0.944
X2 1	0.944
X3 X4 FF16+CP	0.944
X4FF16+CP	0.944
X5 1	0.944
X6 1	0.944
X1*X1 1	0.14

0.14

Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products

\$106 Million Recovery Act Investment will Reduce CO2 Emissions and Mitigate Climate Change

Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with \$106 million from the American Recovery and Reinvestment Act -matched with \$156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans can use.

"These innovative projects convert carbon pollution from a climate threat to an economic resource," said Secretary Chu. "This is part of our broad commitment to unleash the American innovation machine and build the thriving, clean energy economy of the future."

4	23/1 💌	Yield @										
•		Time t	Α	В	С	D	E	F	G	Н	I	J
•	1	1.38	-1	1	1	0	1	-1	1	-1	1	1
•	2	6.44	1	-1	-1	-1	1	-1	1	1	0	1
•	3	5.96	-1	-1	1	-1	-1	1	-1	1	1	0
•	4	4.34	0	-1	1	1	1	1	1	1	-1	-1
•	5	10.46	-1	-1	-1	-1	-1	0	1	-1	-1	-1
•	6	6.95	-1	-1	1	-1	1	-1	-1	0	-1	-1
•	7	8.58	1	0	-1	1	1	-1	-1	-1	1	-1
•	8	2.69	0	1	-1	-1	-1	-1	-1	-1	1	1
•	9	4.3	-1	1	-1	1	0	-1	-1	1	-1	1
•	10	0.77	1	-1	1	-1	0	1	1	-1	1	-1
•	11	2.87	-1	1	1	1	-1	1	-1	-1	0	-1
•	12	1.01	1	1	1	1	1	0	-1	1	1	1
•	13	9.47	-1	-1	-1	1	1	1	0	-1	1	1
•	14	7.49	0	0	0	0	0	0	0	0	0	0
•	15	0.98	1	1	-1	1	1	-1	1	-1	-1	0
•	16	0.86	1	1	1	-1	-1	-1	0	1	-1	-1
•	17	1.25	-1	1	-1	-1	1	1	1	1	1	-1
•	18	1.03	1	-1	1	1	-1	-1	-1	-1	-1	1
•	19	1.07	1	1	0	-1	1	1	-1	-1	-1	1
•	20	7.33	0	0	0	0	0	0	0	0	0	0
•	21	2.61	1	-1	-1	0	-1	1	-1	1	-1	-1
•	22	11.39	-1	-1	0	1	-1	-1	1	1	1	-1
•	23	12.96	-1	0	1	-1	-1	1	1	1	-1	1
•	24	1.18	1	1	-1	1	-1	1	1	0	1	1

Original design was for 11 variables with 23 unique trials and the center point replicated once.

6-FACTOR DEFINITIVE SCREENING DESIGN, PROJECTION IN ALL 2-FACTOR COMBINATIONS (LEFT) AND PROJECTION IN FIRST THREE FACTORS (RIGHT)

10-FACTOR DEFINITIVE SCREENING DESIGN, PROJECTION IN ALL 2-FACTOR COMBINATIONS (LEFT) AND PROJECTION IN FIRST THREE FACTORS (RIGHT)

COLOR MAP FOR 10-FACTOR, 21-TRIAL, DEFINITIVE SCREENING DESIGN

Color Map On Correlations

DISTRIBUTIONS WITH "GOOD" AND "BAD" BEHAVIOR SELECTED

Y VS X PLOTS OF DATA FOR EACH X

Where(40 rows excluded)

SQRT(Y) VS X PLOTS OF DATA FOR EACH X

Where(60 rows excluded)

ACTUAL BY PREDICTED PLOT FOR FINAL 3-FACTOR MODEL FOR THE 24 DESIGN TRIALS

PREDICTING WITH BEST 3-FACTOR AND 4-FACTOR MODELS

SETTINGS OF BEST OBSERVATION OF YIELD = 12.96

Prediction at settings of best observation

Prediction at best settings – run this checkpoint

4	23/1 💌	Yield @										
•		Time t	Α	В	С	D	E	F	G	Н	1	J
•	1	1.38	-1	1	1	0	1	-1	1	-1	1	1
0	2	6.44	1	-1	-1	-1	1	-1	1	1	0	1
•	3	5.96	-1	-1	1	-1	-1	1	-1	1	1	0
•	4	4.34	0	-1	1	1	1	1	1	1	-1	-1
•	5	10.46	-1	-1	-1	-1	-1	0	1	-1	-1	-1
•	6	6.95	-1	-1	1	-1	1	-1	-1	0	-1	-1
•	7	8.58	1	0	-1	1	1	-1	-1	-1	1	-1
•	8	2.69	0	1	-1	-1	-1	-1	-1	-1	1	1
•	9	4.3	-1	1	-1	1	0	-1	-1	1	-1	1
•	10	0.77	1	-1	1	-1	0	1	1	-1	1	-1
•	11	2.87	-1	1	1	1	-1	1	-1	-1	0	-1
•	12	1.01	1	1	1	1	1	0	-1	1	1	1
•	13	9.47	-1	-1	-1	1	1	1	0	-1	1	1
•	14	7.49	0	0	0	0	0	0	0	0	0	0
•	15	0.98	1	1	-1	1	1	-1	1	-1	-1	0
•	16	0.86	1	1	1	-1	-1	-1	0	1	-1	-1
•	17	1.25	-1	1	-1	-1	1	1	1	1	1	-1
•	18	1.03	1	-1	1	1	-1	-1	-1	-1	-1	1
•	19	1.07	1	1	0	-1	1	1	-1	-1	-1	1
•	20	7.33	0	0	0	0	0	0	0	0	0	0
•	21	2.61	1	-1	-1	0	-1	1	-1	1	-1	-1
•	22	11.39	-1	-1	0	1	-1	-1	1	1	1	-1
•	23	12.96	-1	0	1	-1	-1	1	1	1	-1	1
•	24	1.18	1	1	-1	1	-1	1	1	0	1	1
	o 25	15.93	-1	-0.333	-1	1	-1	-1	1	1	1	1
	o 26	2.9	-1	1	-1	1	-1	-1	1	1	1	1
	o 27	16.16	-1	-0.333	-1	-1	-1	-1	1	1	1	1
*	o 28	15.1	-1	-0.333	-1	0	-1	-1	1	1	1	1

ACTUAL BY PREDICTED PLOT FOR FINAL 3-FACTOR MODEL FOR THE 24 DESIGN TRIALS AND 4 VERIFICATION TRIALS

DISCOVERY SUMMIT VIDEO INTRO TO FIT DEFINITIVE SCREENING

- 2017 JMP Discovery Summit presentation by Brad Jones on
 - Simulating Responses and Fitting Definitive Screening Designs JMP User
 Community

NEW DEFINITIVE SCREENING ANALYSIS METHOD

Effect Summary

Source	LogWorth	PValue
Α	1.622	0.02387
В	1.568	0.02705
C	0.515	0.30541
F	0.239	0.57657
J	0.169	0.67802
G	0.159	0.69271
Н	0.141	0.72196
E	0.141	0.72231
I	0.071	0.84905
D	0.061	0.86836

 Treat factors D and I as the dummy factors to be used for error estimates in Definitive Screening Fit

DSD FIT OUTPUT WITH FACTORS D & I USED FOR ERROR

NEW DEFINITIVE SCREENING ANALYSIS METHOD

Stage 1 - Main Effect Estimates						
Term	Estimate	Std Error	t Ratio	Prob> t		
Α	-2.05	0.2228	-9.2	<.0001*		
В	-2.015	0.2228	-9.043	<.0001*		
C	-0.855	0.2228	-3.839	0.0050*		
F	-0.427	0.2228	-1.916	0.0917		
Statist	ic Value					
RMSE	0.9839					
DE	9					

Stage 2 - Even Order Effect Estimates							
Term	Estimate	Std Error	t Ratio	Prob> t			
Intercept	8.6319	0.6421	13.442	<.0001*			
A*B	1.2645	0.2968	4.2608	0.0037*			
B*C	0.9481	0.3036	3.1232	0.0168*			
B*F	0.5687	0.3036	1.8733	0.1032			
C*F	0.9163	0.3213	2.8517	0.0246*			
B*B	-4.756	0.7043	-6.753	0.0003*			
Statistic	Value						
RMSE	1.2435						
DF	7						

Combined Model Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> t		
Intercept	8.6319	0.5947	14.514	<.0001*		
Α .	-2.05	0.2608	-7.86	<.0001*		
В	-2.015	0.2608	-7.726	<.0001*		
C	-0.855	0.2608	-3.279	0.0055*		
F	-0.427	0.2608	-1.637	0.1239		
A*B	1.2645	0.2749	4.6006	0.0004*		
B*C	0.9481	0.2812	3.3722	0.0046*		
B*F	0.5687	0.2812	2.0227	0.0626		
C*F	0.9163	0.2976	3.0791	0.0082*		
B*B	-4.756	0.6523	-7.292	<.0001*		
Statistic	Value					
RMSE	1.1516					
DE	14					

Make Model Run Model

FIT OF RAW YIELD

ANALYSIS STRATEGIES FOR WHEN YOU DON'T HAVE THE NEW DEFINITIVE SCREENING ANALYSIS METHOD

- Conservative start by treating designs like traditional screening
 - Fit main effects only DSD is orthogonal in main effects
 - Then fit ME + squared effects DSD is orthogonal in squared terms too
 - *Use factor sparsity and effect heredity principles to propose final models
 - Use transformation to make error more uniform
 - » square-root identified in plot of SSE vs. λ for Box-Cox transformation (i.e. $\lambda \approx 0.5$)
- Aggressive use stepwise regression to pick "best" subsets of terms
 - Use AICc & BIC stopping criteria and pick "simpler model" Occam's razor
 - Use max K-Fold R-square as stopping rule to pick model (no checkpoints)
 - Use max validation R-square for checkpoints as stopping rule to pick model
 - Fit ALL possible models

^{*}Factor sparsity states only a few variables will be active in a factorial DOE

Effect heredity states significant interactions will only occur if at least one parent is active

Pg. 112, Wu & Hamada, "Experiments, Planning, Analysis and Parameter Design Optimization"

ALL ANALYSES RANK FACTORS A, B & C AS TOP 3

FACTOR F APPEARS TO BE MOST LIKELY FOURTH FACTOR

- Linear terms only fourth factor is F
- Linear + Squared terms fourth factor is D
- Stepwise with min AICc stopping rule fourth factor is F
- Stepwise with max K-Fold R-Square stopping rule fourth factor is F
- Stepwise with max Validation R-Square as stopping rule fourth factor is F
- All possible models fourth factor is G
- When D & F are in same 5-factor (with A, B, & C) stepwise model, D drops out
- · When G & F are in same 5-factor (with A, B, & C) stepwise model, G drops out
- When D & G are in same 5-factor (with A, B, & C) stepwise model, both drop out
- There is an important difference between saying, "Factor F has no effect." and, "Given the amount of data taken an effect for factor F was not detected."
- Augmenting design to support 6-factor quadratic model in A, B, C, D, F & G will
 - help resolve the relative contributions of D, F & G
 - increase the power for all but especially the squared terms

CONSERVATIVE ANALYSIS

Sorted Parameter Estimates							
Term	Estimate	Std Error	t Ratio		Prob> t		
Α	-2.023428	0.791305	-2.56		0.0239 *		
В	-2.030884	0.815352	-2.49		0.0271 *		
C	-0.844283	0.791305	-1.07		0.3054		
F	-0.453239	0.791305	-0.57		0.5766		
J	0.3462584	0.815352	0.42		0.6780		
G	0.3230058	0.799335	0.40		0.6927		
Н	0.2867159	0.788411	0.36		0.7220		
Е	-0.287384	0.791305	-0.36		0.7223		
1	-0.155204	0.799335	-0.19		0.8490		
D	0.1332841	0.788411	0.17		0.8684		

TRANSFORMATIONS SQRT, LOG, & NONE

Actual by Predicted Plot

Actual by Predicted Plot

Actual by Predicted Plot

Summary of Fit

_	
RSquare	0.825967
RSquare Adj	0.789328
Root Mean Square Error	0.416337
Mean of Response	1.983747
Observations (or Sum Wgts	24

Summary of Fit

RSquare	0.823029
RSquare Adj	0.785772
Root Mean Square Error	0.450888
Mean of Response	1.151951
Observations (or Sum Wats	24

Summary of Fit

RSquare	0.789957
RSquare Adj	0.745738
Root Mean Square Error	1.938688
Mean of Response	4.72375
Observations (or Sum Wgts	24

PLOTS OF RESIDUALS FOR DIFFERENT TRANSFORMATIONS

Model fit was reduced quadratic in A, B & C:

Yield = Intercept + A + B + C + B*B + A*B + B*C

Distributions

Studentized Resid Sqrt(Yield @ Time t) 2

Normal(-0.0045,1.03596)

Fitted Normal

Parameter Estimates

 Type
 Parameter
 Estimate
 Lower 95%
 Upper 95%

 Location
 μ
 -0.004478
 -0.441926
 0.4329688

 Dispersio
 σ
 1.0359592
 0.8051616
 1.4532028

 $-2\log(\text{Likelihood}) = 68.8047829349136$

Goodness-of-Fit Test

Shapiro-Wilk W Test

W Prob<W

0.972241 0.7224

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

Studentized Resid Log(Yield @ Time t)

[–] Normal(-0.008,1.03586)

Fitted Normal

Parameter Estimates

 Type
 Parameter
 Estimate
 Lower 95%
 Upper 95%

 Location
 μ
 -0.007981
 -0.445387
 0.4294258

 Dispersio
 σ
 1.035863
 0.8050868
 1.4530679

 $-2\log(Likelihood) = 68.8003267780461$

Goodness-of-Fit Test

Shapiro-Wilk W Test

W Prob<W

0.992406 0.9994

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

Studentized Resid Yield @ Time t

Normal(-0.0003,1.0284)

Fitted Normal

Parameter Estimates

 Type
 Parameter
 Estimate
 Lower 95%
 Upper 95%

 Location
 μ
 -0.000276
 -0.434534
 0.4339807

 Dispersio
 σ
 1.0284046
 0.79929
 1.4426054

 $-2\log(\text{Likelihood}) = 68.4534641248215$

Goodness-of-Fit Test

Shapiro-Wilk W Test

W Prob<W

0.918997 0.0555

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

STEPWISE 3-FACTOR MODEL (7 TERMS) - LEFT FULL QUADRATIC 3-FACTOR MODEL (10 TERMS) - RIGHT

STEPWISE MODELS: 4-FACTOR (12 TERMS), 5-FACTOR (13 TERMS), 6-FACTOR (15 TERMS)

AGGRESSIVE ANALYSES

- Stepwise using Main Effects and Squared Effects for all factors
 - Will show just the use of AICc & BIC stopping criteria –
 all stepwise approaches yield very similar results
- Stepwise using full 10-factor, 66-term quadratic model
 - 1 intercept + 10 ME + 10 SQ + 45 2FI (2-factor interactions)
 - Use AICc & BIC stopping criteria and pick "simpler model" Occam's razor
 - Use max K-Fold R-square as stopping rule to pick model (no checkpoints)
 - Use max validation R-square for checkpoints as stopping rule to pick model
 - Fit ALL possible models

21 TERMS, ME + SQ

RAW RESPONSE VALUES USED

21 TERMS, ME + SQ

TRANSFORMED VALUES USED

Sorted Parameter Estimates

66 TERM QUADRATIC

RAW RESPONSE VALUES USED

66 TERM QUADRATIC

TRANSFORMED VALUES USED

Actual by Predicted Plot

Criterion History 200 AIC 150

Sorted Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Α	-0.505343	0.057053	-8.86	<.0001 *
В	-0.491041	0.057053	-8.61	<.0001 *
B*B	-1.111685	0.141981	-7.83	<.0001 *
A*B	0.253637	0.060121	4.22	0.0007 *
C	-0.231007	0.057053	-4.05	0.0010 *
B*C	0.2053297	0.061367	3.35	0.0044 *
C*F	0.2093075	0.063209	3.31	0.0047 *
F	-0.110087	0.057053	-1.93	0.0728

USE MAX K-FOLD R-SQUARE AS STOPPING RULE

66 TERM QUADRATIC

TRANSFORMED VALUES USED

Actual by Predicted Plot

Trainin

K-Fold

Sorted Parameter Estimates

USE MAX VALIDATION R-SQUARE FOR 4 CHECKPOINTS AS STOPPING RULE

66 TERM QUADRATIC

TRANSFORMED VALUES USED

Actual by Predicted Plot

Training •

Exclude

Sorted Parameter Estimates

USE AIC CRITERION AS STOPPING RULE

POISSON DISTRIBUTION USED WITH GENERALIZED **REGRESSION**

66 TERM QUADRATIC

FIT ALL POSSIBLE **MODELS UP TO 8 TERMS**

Please Enter Values

OK

Cancel

BIC

29.1933

WISDOM FROM BOB

Although your model can fit the data, it may NOT fit the process from which the data come!

How do I know if my model fits?

" is right?

" adequate?

" accurate?

For me, nothing beats checkpoints!

Do they fall within prediction limits?

What does a plot of actual vs. prediction look like?

Continue to check model predictions over time.

tools wear

seasons change

suppliers and operators change

FACTOR F APPEARS TO BE MOST LIKELY FOURTH FACTOR

- Linear terms only fourth factor is F
- Linear + Squared terms fourth factor is D
- Stepwise with min AICc stopping rule fourth factor is F
- Stepwise with max K-Fold R-Square stopping rule fourth factor is F
- Stepwise with max Validation R-Square as stopping rule fourth factor is F
- All possible models fourth factor is G
- When D & F are in same 5-factor (with A, B, & C) stepwise model, D drops out
- When G & F are in same 5-factor (with A, B, & C) stepwise model, G drops out
- When D & G are in same 5-factor (with A, B, & C) stepwise model, both drop out
- There is an important difference between saying, "Factor F has no effect." and, "Given the amount of data taken an effect for factor F was not detected."
- Augmenting design to support 6-factor quadratic model in A, B, C, D, F & G will
 - help resolve the relative contributions of D, F & G
 - increase the power for all but especially the squared terms

IF MORE THAN A FEW FACTORS ARE SIGNIFICANT, THEN AUGMENT DESIGN TO SUPPORT 2ND ORDER MODEL

0.	A	В	С	D	F	G	Block	Yield @ Time t
14	0	0	0	0	0		1	7.49
15	1	1	-1	1	-1	1		0.98
16	1	1	1	-1	-1	0	1	0.86
17	-1	1	-1	-1	1	1	1	1.25
18	1	-1	1	1	-1	-1		1.03
19	1	1	0	-1	1	-1		1.07
20	0	0	0	0	0	0	1	7.33
21	1	-1	-1	0	1	-1		2.61
22	-1	-1	0	1	-1		1	11.39
23	-1	0	1	-1	1	1	1	12.96
24	1	1	-1	1	1	1	1	1.18
25	1	0	1	1	-1	1	2	
26	1	-1	0	1	1	0	2	
27	1	-1	-1	1	0	1	2	
28	1	-1	0	-1	0	-1	2	
29	1	0	-1	-1	1	0	2	
30	1	1	0	-1	0	1	2	
31	1	0	1	0	1	-1	2	
32	-1	-1	0	0	1	1	2	
33	0	0	1	1	-1	-1	2	
34	-1	-1	1	0	0	0	2	
35	0	1	1	0	1	0	2	
36	0	1	-1	1	1	-1	2	

NOTE: First 13 rows of original design are not shown.

These 12 trials added onto original 24 trials to support full quadratic model in 6 most important factors plus a block effect between original and augmented trials

Power Analysis

Significance Level 0.05

Anticipated RMSE 1

Anticipated

Parameter Coefficients Power

Intercept	1	0.273
Block	1	0.983
Α	1	0.965
В	-1	0.966
С	1	0.976
D	-1	0.969
F	1	0.975
G	-1	0.961
A*B	1	0.887
A*C	-1	0.881
A*D	1	0.825
A*F	-1	0.915
A*G	1	0.732

B*C

B*D

B*F

B*G

C*D

C*F

C*G

D*F

Power Analysis

Significance Level 0.05

Anticipated RMSE 1 Anticipated

Parameter Coefficients Power

0.724	Intercept	1	0.364
0.872	Α	1	0.998
0.838	В	-1	0.998
0.778	C	1	0.998
0.847	D	-1	0.998
0.838	F	1	0.998
0.86	G	-1	0.998
0.299	A*A	1	0 527

D*G	-1	0.838	F	1	0.998
F*G	1	0.86	G	-1	0.998
A*A	1	0.299	A*A	1	0.527
B*B	-1	0.361	B*B	-1	0.599
C*C	1	0.362	C*C	1	0.582
D*D	-1	0.309	D*D	-1	0.541
F*F	1	0.384	F*F	1	0.573
G*G	-1	0.347	G*G	-1	0.568

0.728

0.853

0.859

POWER FOR SQUARED TERMS IN 2^{ND} ORDER MODEL IS INCREASED TO NEAR THAT OF 6-FACTOR RSM DESIGNS

′ 0 •								Yield @
	A	В	C	D	F	G	Block	Time t
14	0	0	0	0	0	0	1	7.49
15	1	1	-1	1	-1	1	1	0.98
16	1	1	1	-1	-1	0	1	0.86
17	-1	1	-1	-1	1	1	1	1.25
18	1	-1	1	1	-1	-1	1	1.03
19	1	1	0	-1	1	-1	1	1.07
20	0	0	0	0	0	0	1	7.33
21	1	-1	-1	0	1	-1	1	2.61
22	-1	-1	0	1	-1	1	1	11.39
23	-1	0	1	-1	1	1	1	12.96
24	1	1	-1	1	1	1	1	1.18
25	1	0	1	1	-1	1	2	
26	1	-1	0	1	1	0	2	
27	1	-1	-1	1	0	1	2	
28	1	-1	0	-1	0	-1	2	
29	1	0	-1	-1	1	0	2	
30	1	1	0	-1	0	1	2	
31	1	0	1	0	1	-1	2	
32	-1	-1	0	0	1	1	2	
33	0	0	1	1	-1	-1	2	
34	-1	-1	1	0	0	0	2	
35	0	1	1	0	1	0	2	
36	0	1	-1	1	1	-1	2	

COMPARE AUGMENTED DESIGNS

TOP: 10-FACTOR FRACTIONAL FACTORIAL + C.P. AUGMENTED TO SUPPORT FULL QUADRATIC MODEL IN 6 FACTORS

33 + 9 = 42 TOTAL TRIALS

UPPER MIDDLE: 10-FACTOR PLACKET-BURMAN + C.P. AUGMENTED TO SUPPORT FULL QUADRATIC MODEL IN 6 FACTORS 25 + 11 = 36 TOTAL TRIALS

LOWER MIDDLE: 10-FACTOR DEFINITIVE SCREENING AUGMENTED TO SUPPORT FULL QUADRATIC MODEL IN 6 FACTORS

21 + 15 = 36 TOTAL TRIALS

BOTTOM: 6-FACTOR CUSTOM DOE FOR FULL RSM MODEL 34 TOTAL TRIALS

Fraction of Design Space Plot

Design Diagnostics I Optimal Design D Efficiency 40.729 G Efficiency 56.09719 A Efficiency 12.41717

0.82307

0.05

Average Variance of Prediction

Design Creation Time (seconds)

Design Diagnostics

Design Diagnostics

Design Diagnostics				
I Optimal Design				
D Efficiency	38.46605			
G Efficiency	54.33992			
A Efficiency	14.61968			
Average Variance of Prediction	0.833744			
Design Creation Time (seconds)	0.05			

I Optimal Design	
D Efficiency	42.15506
G Efficiency	69.61262
A Efficiency	22.27027
Average Variance of Prediction	0.563765
Design Creation Time (seconds)	0.066667

Design Diagnostics					
I Optimal Design					
42.94028					
75.52931					
27.20305					
0.44424					
0.066667					

COMPARE AUGMENTED DESIGNS

TOP: 14-FACTOR FRACTIONAL FACTORIAL + C.P. AUGMENTED TO SUPPORT FULL QUADRATIC MODEL IN 7 FACTORS
33 + 13 = 46 TOTAL TRIALS

MIDDLE: 14-FACTOR DEFINITIVE SCREENING AUGMENTED TO SUPPORT FULL QUADRATIC MODEL IN 7 FACTORS 29 + 17 = 46 TOTAL TRIALS

BOTTOM: 7-FACTOR CUSTOM DOE FOR FULL RSM MODEL 42 TOTAL TRIALS

NUMBER OF UNIQUE TRIALS FOR 3 RESPONSE-SURFACE DESIGNS AND NUMBER OF QUADRATIC MODEL TERMS VS. NUMBER OF CONTINUOUS FACTORS

If generally running 3, 4 or 5-factor fractional-factorial designs...

- 1. How many interactions are you not investigating?
- 2. How many more trials needed to fit curvature?
- 3. Consider two stages: Definitive Screening + Augmentation

SUMMARY OF MODERN SCREENING DOE

Definitive Screening Designs

- Efficiently estimate main and quadratic effects for no more and often fewer trials than traditional designs
- If only a few factors are important the design may collapse into a "one-shot" design that supports a response-surface model
- If many factors are important the design can be augmented to support a response-surface model
- Case study for a 10-variable process shows that it can be optimized in just 23 unique trials

Thanks. Questions or comments?

TOM.DONNELLY@JMP.COM

Copyright © 2010 SAS Institute Inc. All rights reserved.

JMP 11 DEFINITIVE SCREENING DESIGN COLOR MAPS FOR 8-CONTINUOUS, 2-CATEGORICAL FACTOR

De-alias 2-f Interactions and Categorical Factors

6-FACTOR, 16-TRIAL, NON-REGULAR FRACTIONAL FACTORIAL ("NO CONFOUNDING" DESIGN)

Jones, B. and Montgomery, D., (2010) "Alternatives to Resolution IV Screening Designs in 16 Runs." *International Journal of Experimental Design and Process Optimization*, 2010; Vol. 1 No. 4: 285-295.

•							Color Map On Correlations
	Α	В	С	D	E	F	
1	1	1	1	1	1	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	1	1	-1	-1	-1	-1	
3	-1	-1	1	1	-1	-1	
4	-1	-1	-1	-1	1	1	
5	1	1	1	-1	1	-1	
6	1	1	-1	1	-1	1	
7	-1	-1	1	-1	-1	1	
8	-1	-1	-1	1	1	-1	
9	1	-1	1	1	1	-1	
10	1	-1	-1	-1	-1	1	
11	-1	1	1	1	-1	1	
12	-1	1	-1	-1	1	-1	
13	1	-1	1	-1	-1	-1	
14	1	-1	-1	1	1	1	_
15	-1	1	1	-1	1	1	
16	-1	1	-1	1	-1	-1	

WITH JMP 11 USE DEFINITIVE SCREENING ON DOE MENU

ANALYSIS STRATEGIES

Visual Tools:

- Distribution click on "good" and "bad" response values to see correlations with factor settings
- Graph Builder Y vs. X graphs all data, summarized data, fit line, smoother
 - » Drop factors side by side or alternatively (for coded factors) stack factors then replot
 - » Use Overlay field to look at possible interactions between two factors

Analytic Tools:

- Conservative: Main Effects fit look at Scaled estimates
 - » Consider adding interactions among significant factors using Effects Heredity and Sparsity
- Aggressive: Strepwise with various stopping criteria
 - » AICc, BIC, K-fold, Excluded checkpoints,
 - » Fit All Possible Models

• Analytic Output:

- » Stepwise Histories Criterion or Rsquare
- » Actual vs. Predicted with Graph Builder Col Switch different models
- » Create All Possible Models Table Plot four metrics using Overlap Plot

COLOR MAP FOR 20-TRIAL PLACKETT-BURMAN DESIGN WITH 19 CONTINUOUS FACTORS

COLOR MAP FOR 40-TRIAL FOLD-OVER PLACKETT-BURMAN DESIGN WITH 19 CONTINUOUS FACTORS AND 20TH BLOCK FACTOR

COLOR MAP FOR A 42-TRIAL DEFINITIVE SCREENING DESIGN WITH 19 CONTINUOUS FACTORS AND 1 TWO-LEVEL CATEGORICAL FACTOR

COLOR MAP FOR 21-TRIAL HALF OF 42-TRIAL DSD WITH 19 CONTINUOUS FACTORS SPLIT ON 20TH CATEGORICAL FACTOR

COLOR MAP FOR 20-TRIAL PLACKETT-BURMAN DESIGN (LEFT) AND 21-TRIAL HALF OF 42-TRIAL DSD (RIGHT) BOTH WITH 19 CONTINUOUS FACTORS

COLOR MAP FOR A 40-TRIAL FOLD-OVER PLACKET-BURMAN DESIGN (LEFT) AND A 42-TRIAL DEFINITIVE SCREENING DESIGN (RIGHT) WITH 19 CONTINUOUS AND 1 TWO-LEVEL BLOCK/CATEGORICAL FACTOR

For designs containing only continuous factors, compare these properties of definitive screening designs versus standard screening designs:

- Main effects are orthogonal to two-factor interactions.
 - Definitive Screening Designs: Always
 - Standard Screening Designs: Only for Resolution IV or higher
- No two-factor interaction is completely confounded with any other two-factor interaction.
 - Definitive Screening Designs: Always
 - Standard Screening Designs: Only for Resolution V or higher
- All quadratic effects* are estimable in models containing only main and quadratic effects.
 - Definitive Screening Designs: Always
 - Standard Screening Designs: Never
 - * When quadratic effects are mentioned, the standard screening designs are assumed to have center points.

